Preferred Language
Articles
/
yhdnbI4BVTCNdQwCOkdc
Solar-Induced Photocatalytic Degradation of Reactive Red and Turquoise Dyes Using a Titanium Oxide/Xanthan Gum Composite

The present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8% in 120 min) under solar light with a remarkable Langmuir–Hinshelwood pseudo-first-order degradation rate of 0.0183 and 0.0151 min−1, respectively, under optimum conditions of pH 5, dye concentration of 25 mg/L, TiO2/XG concentration of 25 mg/L, H2O2 concentration of 400 mg/L, and reaction time of 120 min. The improved photocatalytic ability was ascribed to the impact of TiO2/XG nanoparticles with a high surface area, and lower band gap energy. Solar light energy has significant potential for addressing energy deficit and water pollution concerns.

Scopus Clarivate Crossref
View Publication
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
Degradation of Indigo Dye Using Quantum Mechanical Calculations

The semiempirical (PM3) and DFT quantum mechanical methods were used to investigate the theoretical degradation of Indigo dye. The chemical reactivity of the Indigo dye was evaluated by comparing the potential energy stability of the mean bonds. Seven transition states were suggested and studied to estimate the actually starting step of the degradation reaction. The bond length and bond angle calculations indicate that the best active site in the Indigo dye molecule is at C10=C11.  The most possible transition states are examined for all suggested paths of Indigo dye degradation predicated on zero-point energy and imaginary frequency. The first starting step of the reaction mechanism is proposed. The change in enthalpy, Gibbs free energ

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique

In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.

View Publication Preview PDF
Publication Date
Tue Dec 13 2022
Journal Name
Emergent Materials
Spectroscopic characteristics of highly pure metal oxide nanostructures prepared by DC reactive magnetron sputtering technique

In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th

... Show More
Scopus (22)
Crossref (8)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Nov 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Highly-Pure Nanostructured Metal Oxide Multilayer Structure Prepared by DC Reactive Magnetron Sputtering Technique

In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 27 2019
Journal Name
Iraqi Journal Of Science
Kaolin/Gum Arabic Nanocomposite as Antifungal agent against Aspergillus Flavus and Saccharomyces cerevisiae: Kaolin/Gum Arabic Nanocomposite as Antifungal agent

Kaolin/Gum Arabic nanocomposite was cheaply synthesized from Kaolin and Gum Arabic. The Kaolin/Gum Arabic nanocomposite suspension, Gum Arabic extracts and Kaolin suspension were applied as antifungal agents. The antifungal activity was tested using agar well diffusion method where by wells were made on the petri dishes with cork borer 6mm diameter in size and various concentrations (150 µg/L, 200 µg/L, and 250 µg/L) of Gum Arabic ethanol extracts, Gum Arabic /Kaolin nanocomposite, and Kaolin was propelled into the wells with the help of micropipette and the petri dishes were allowed to stand for 30 minutes to ensure proper diffusion before being incubated at 37oC. The results showed that synthesized Kaolin/Gum Arabic nanoc

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
A New method for ISE construction for methyl orange dyes and using for indirect determination of Amitriptyline Hydrochloried drug

A new method for construction ion-selective electrode (ISE) by heating reaction of methyl orange with ammonium reineckate using PVC as plasticizer for determination methyl orange and determination Amitriptyline Hydrochloried drug by formation ion-pair on electrode surface . The characteristics of the electrode and it response as following : internal solution 10-4M , pH (2.5-5) ,temperature (20-30) and response time 2 sec. Calibration response for methyl orange over the concentrationrange 10-3 -10-9 M with R=0.9989 , RSD%=0.1052, D.O.L=0.315X10-9 MEre%=(-0.877- -2.76) , Rec%.=(97.230 -101.711) .

Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Green Synthesis of Iron Oxide Nanoparticles and Their Modification with CTAB for the Decolorization of Dye Reactive Blue 238

     Magnetized iron oxide nanoparticles (NPs) were prepared using Eucalyptus leaf extract and then coated with CTAB (Cetrimonium bromide) to increase efficiency. The prepared and modified (NPs) were characterized using AFM, FTIR, and X-ray techniques. The adsorption of the dye reactive blue RB 238 on coated (NPs) was investigated. The effect of various experimental factors, such as the initial concentration of the dye, the amount of adsorbent, pH and temperature on the removal of RB238 was studied. The best conditions for dye removal were found to be 298 K in an acidic medium of pH = 3 and an appropriate dose of the adsorbent of 0.15 g per 25 mg/L to achieve the best color removal of 90% within 60 minutes. The pseudo-second-order re

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Permeable Reactive Barrier of Coated Sand by Iron Oxide for Treatment of Groundwater Contaminated with Cadmium and Copper Ions

ان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز با

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Heliyon
Removal of amoxicillin from contaminated water using modified bentonite as a reactive material

This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modi

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Sep 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering

In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.

View Publication Preview PDF