The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
<p>The demand for internet applications has increased rapidly. Providing quality of service (QoS) requirements for varied internet application is a challenging task. One important factor that is significantly affected on the QoS service is the transport layer. The transport layer provides end-to-end data transmission across a network. Currently, the most common transport protocols used by internet application are TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Also, there are recent transport protocols such as DCCP (data congestion control protocol), SCTP (stream congestion transmission protocol), and TFRC (TCP-friendly rate control), which are in the standardization process of Internet Engineering Task
... Show MoreTraumatic radial nerve injury in humeral shaft fracture is the most common traumatic nerve injury in long-bone fracture, with overall prevalence 2-18%, ranging from traction to complete transection. Spontaneous recovery may reach 88%. The aim of the study is to assess the sensitivity & specificity of the ultrasound to detect the radial nerve injury and to see if this can be used as a diagnostic test. This is a prospective study on 17 adult patients with a closed fracture of the humeral shaft, dividing into two groups, the first group of 7 patients had signs and symptoms of radial nerve palsy at presentation and the second group of 10 patients had intact radial nerve function was considered as a control group. All these patients had at leas
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show MoreMethotrxate (MTX) has become the standard of care and first-line therapy for patients who have RA and consider as a gold standard of treatment for RA. The role of MTX in the treatment of RA has now been well established. The use of MTX treatment of RA inhibits proliferation of the lymphocytes, reduces signs and symptoms this disease, reduces progression damage of the joints and improves quality of life outcome. Progranulin (PGRN) acts a role in autoimmune inflammatory, has important function in several processes including immune response. Present study has conducted to find the effect of MTX drugs as a therapeutic target for RA patients because of its ability to bind with tumor necrosis factor receptor (TNFR), with progranulin, obestatin an
... Show MoreIn information security, fingerprint verification is one of the most common recent approaches for verifying human identity through a distinctive pattern. The verification process works by comparing a pair of fingerprint templates and identifying the similarity/matching among them. Several research studies have utilized different techniques for the matching process such as fuzzy vault and image filtering approaches. Yet, these approaches are still suffering from the imprecise articulation of the biometrics’ interesting patterns. The emergence of deep learning architectures such as the Convolutional Neural Network (CNN) has been extensively used for image processing and object detection tasks and showed an outstanding performance compare
... Show More