Preferred Language
Articles
/
xxfvQo8BVTCNdQwCeGfO
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Approximation Solution of a Nonlinear Parabolic Boundary Value Problem Via Galerkin Finite Elements Method with Crank-Nicolson
...Show More Authors

    This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimation of the Reliability Function of Basic Gompertz Distribution under Different Priors
...Show More Authors

In this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I Article Sidebar
...Show More Authors

n this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the types of the kernel boundary func

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 08 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application
...Show More Authors

In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application

Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposed Entropy Loss function and application to find Bayesian estimator for Exponential distribution parameter
...Show More Authors

The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-kindy College Medical Journal
Neural Tube Defects in Iraq
...Show More Authors

1.
Embryonic Origin of Neural Tube Defects.
Insaf Jasim Mahmoud
2.
Etiology of Neural Tube Defectss.
Ali Abdul Razzak Obed
3.
Epidemiology of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi
4.
Surgical Management of Neural Tube Defects.
Laith Thamer Al-Ameri
5.
Prevention of Neural Tube Defects in Iraq.
Mahmood Dhahir Al-Mendalawi

View Publication Preview PDF
Publication Date
Sat Mar 10 2012
Journal Name
الدنانير
Cryptography Using Artificial Neural Network
...Show More Authors

Neural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.

Preview PDF
Publication Date
Tue Jun 30 2009
Journal Name
Al-kindy College Medical Journal
The Use of Myocardial Performance Index (Mpi) in Assessment of Heart Function
...Show More Authors

Background: Ejection fraction have been used frequently
for assessment of the left ventricular function, but can be
associated with errors in which myocardial performance
index have been used as another parameter to measure the
left ventricular function.
Objective: selecting another echocardiography parameter
for the assessment of myocardial in function instead of the
ejection fraction.
Methods: 160 patients referred to the echocardiogram unit
from the period december 2007 to august 2008 requesting
assessment of left ventricular function. After clinical
examination, routine blood tests; chest x-ray and
electrocardiographic recording have been completed. All
patients informed to come for this unit af

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Building discriminant function for repeated measurements data under compound symmetry (CS) covariance structure and applied in the health field
...Show More Authors

Discriminant analysis is a technique used to distinguish and classification an individual to a group among a number of  groups based on a linear combination of a set of relevant variables know discriminant function. In this research  discriminant analysis used to analysis data from repeated measurements design. We  will  deal  with the problem of  discrimination  and  classification in the case of  two  groups by assuming the Compound Symmetry covariance structure  under  the  assumption  of  normality for  univariate  repeated measures data.

 

... Show More
View Publication Preview PDF
Crossref