The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
The aim of the research is to apply fibrewise multi-emisssions of the paramount separation axioms of normally topology namely fibrewise multi-T0. spaces, fibrewise multi-T1 spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal spaces and fibrewise multi-functionally normal spaces. Also we give many score regarding it.
The main purpose from this paper is to introduce a new kind of soft open sets in soft
topological spaces called soft omega open sets and we show that the collection of
every soft omega open sets in a soft topological space (X,~,E) forms a soft topology
~
on X which is soft finer than ~
. Moreover we use soft omega open sets to define
and study new classes of soft functions called weakly soft omega open functions and
weakly soft omega closed functions which are weaker than weakly soft open functions
and weakly soft closed functions respectively. We obtain their basic properties, their
characterizations, and their relationships with other kinds of soft functions between
soft topological spaces.<
Let
be a dynamical system,
is said to be topological transitive if for every pair of non-empty open set
, there exists
such that
. We introduce and investigate a new definition of topological transitive by using the nation N-open subset and we called N-transitive and prove the equivalent definitions of this new definition.
The importance of topology as a tool in preference theory is what motivates this study in which we characterize topologies generating by digraphs. In this paper, we generalized the notions of rough set concepts using two topological structures generated by out (resp. in)-degree sets of vertices on general digraph. New types of topological rough sets are initiated and studied using new types of topological sets. Some properties of topological rough approximations are studied by many propositions.
In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
In the present paper, we have introduced some new definitions On D- compact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.
In this study, the concept of fuzzy α-topological vector space is introduced by using the concept fuzzy α-open set , some properties of fuzzy α-topological vector spaces are proved .We also show that the space is -space iff every singleton set is fuzzy α- closed .Finally, the convex property and its relation with the interior points are discussed.
In this paper, we define some generalizations of topological group namely -topological group, -topological group and -topological group with illustrative examples. Also, we define grill topological group with respect to a grill. Later, we deliberate the quotient on generalizations of topological group in particular -topological group. Moreover, we model a robotic system which relays on the quotient of -topological group.
In this work we present the concepts of topological Γ-ring, norm of topological Γ-ring, homomorphism, kernel of topological Γ-ring and compact topological Γ-ring