Preferred Language
Articles
/
x2FQHpkBdMdGkNqjGhNB
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
Artificial Neural Network Models to Predict the Cost and Time of Wastewater Projects
...Show More Authors

Infrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Classification of brain tumors using the multilayer perceptron artificial neural network
...Show More Authors

Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Swarm And Evolutionary Computation
Improving the performance of evolutionary multi-objective co-clustering models for community detection in complex social networks
...Show More Authors

Scopus (34)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Tue Mar 31 2020
Journal Name
International Journal Of Heat And Technology
Enhancement of Natural Convection Heat Transfer of Hybrid Design Heat Sink
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Applying some hybrid models for modeling bivariate time series assuming different distributions for random error with a practical application
...Show More Authors

Abstract

  Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
An Overview of Audio-Visual Source Separation Using Deep Learning
...Show More Authors

    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test A

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref