The study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made of nickel superalloys such as IN 738 LC(Inconel 738). Few scientists investigated the impact of Al2O3 or Al additions to Nickel-base superalloys as coating layer by using the slurry coating method on oxidation resistance to enhance the Nickel-base superalloy's oxidation resistance. In this study, IN 738 LC is coated with two different coating percentages, the first being (10 Al+90 Al2O3) and the second being (40 Al+60 Al2O3). Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD) were performed on all samples before and after oxidation. According to the results, SEM images of the surface revealed that the layer of the surface has a relatively moderated porosity value and that some of the coating layers contain micro-cracks. The best surface roughness of specimens coated with 60 % alumina+40 % aluminum was 5.752 nm. Whereas, the surface roughness of specimens coated with 90 % alumina+10 % aluminum was 6.367 nm.Results reveal that alloys with both Al2O3 and Al additions have reported a positive synergistic effect of the Al2O3and Al additions on oxidation resistance. Moreover,the NiCrAl2O3 thermal coating has good oxidation resistance and the effective temperature of anti-oxidation is raised to 1100 °C in turn reducing the maintenance period of turbine blades
Computer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition . The optical properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these electron gun where are abeam current 4*10-4A can be supplied by using cathode tip of radius 100 nm.
Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreBoth the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th
... Show MoreEntropy define as uncertainty measure has been transfared by using the cumulative distribution function and reliability function for the Burr type – xii. In the case of data which suffer from volatility to build a model the probability distribution on every failure of a sample after achieving limitations function, probabilistic distribution. Has been derived formula probability distribution of the new transfer application entropy on the probability distribution of continuous Burr Type-XII and tested a new function and found that it achieved the conditions function probability, been derived mean and function probabilistic aggregate in order to be approved in the generation of data for the purpose of implementation of simulation
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The res
... Show MoreThis study proposed control system that has been presented to control the electron lens resistance in order to obtain a stabilized electron lens power. This study will layout the fundamental challenges, hypothetical plan arrangements and development condition for the Integrable Optics Test Accelerator (IOTA) in progress at Fermilab. Thus, an effective automatic gain control (AGC) unit has been introduced which prevents fluctuations in the internal resistance of the electronic lens caused by environmental influences to affect the system's current and power values and keep them in stable amounts. Utilizing this unit has obtained level balanced out system un impacted with electronic lens surrounding natural varieties.
Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show More