Let M be an R-module, where R be a commutative; ring with identity. In this paper, we defined a new kind of submodules, namely T-small quasi-Dedekind module(T-small Q-D-M) and essential T-small quasi-Dedekind module(ET-small Q-D-M). Let T be a proper submodule of an R-module M, M is called an (T-small Q-D-M) if, for all f ∊ End(M), f ≠ 0, implies
We introduce in this paper, the notion of a 2-quasì-prime module as a generalization of quasi-prime module, we know that a module E over a ring R is called quasi-prime module, if (0) is quasi-prime submodule. Now, we say that a module E over ring R is a 2-quasi-prime module if (0) is 2-quasi-prime submodule, a proper submodule K of E is 2-quasi-prime submodule if whenever , and , then either or .
Many results about these kinds of modules are obtained and proved, also, we will give a characterization of these kinds of modules.
Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J- submodules as a – and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module J- module if every submodule of is quasi J-pure. Many results about this concept
The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclass
... Show MoreLet M be an R-module. In this paper we introduce the concept of quasi-fully cancellation modules as a generalization of fully cancellation modules. We give the basic properties, several characterizations about this concept. Also, the direct sum and the localization of quasi-fully cancellation modules are studied.
Throughout this paper, three concepts are introduced namely stable semisimple modules, stable t-semisimple modules and strongly stable t-semisimple. Many features co-related with these concepts are presented. Also many connections between these concepts are given. Moreover several relationships between these classes of modules and other co-related classes and other related concepts are introduced.
In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.
Let be a ring with identity and be a submodule of a left - module . A submodule of is called - small in denoted by , in case for any submodule of , implies . Submodule of is called semi -T- small in , denoted by , provided for submodule of , implies that . We studied this concept which is a generalization of the small submodules and obtained some related results
Let R be a commutative ring with unity, let M be a left R-module. In this paper we introduce the concept small monoform module as a generalization of monoform module. A module M is called small monoform if for each non zero submodule N of M and for each f ∈ Hom(N,M), f ≠0 implies ker f is small submodule in N. We give the fundamental properties of small monoform modules. Also we present some relationships between small monoform modules and some related modules
We introduce the notion of t-polyform modules. The class of t- polyform modules contains the class of polyform modules and contains the class of t-essential quasi-Dedekind.
Many characterizations of t-polyform modules are given. Also many connections between these class of modules and other types of modules are introduced.
An R-module M is called rationally extending if each submodule of M is rational in a direct summand of M. In this paper we study this class of modules which is contained in the class of extending modules, Also we consider the class of strongly quasi-monoform modules, an R-module M is called strongly quasi-monoform if every nonzero proper submodule of M is quasi-invertible relative to some direct summand of M. Conditions are investigated to identify between these classes. Several properties are considered for such modules