Preferred Language
Articles
/
txeNUY8BVTCNdQwC_Gt3
⊕ μ*–essential – Supplemented
...Show More Authors

View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
H - He-essential-supplemented modules
...Show More Authors

Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Essential T- Weak Supplemented Modules
...Show More Authors

An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Physics: Conference Series
D_j -Supplemented Modules
...Show More Authors

Scopus
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
⊕-J-supplemented modules
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
⊕-Rad -supplemented modules
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Cofinitely @Dj-supplemented modules
...Show More Authors

Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
On S*-Supplemented Modules
...Show More Authors

The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon May 31 2021
Journal Name
Iraqi Journal Of Science
FI--J-supplemented modules
...Show More Authors

A Module M is called cofinite  J- Supplemented  Module  if for every  cofinite submodule L of  M, there exists a submodule N of M such that M=L+N with   main properties of cof-J-supplemented modules.  An R-module M is called fully invariant-J-supplemented if for every fully invariant submodule N of M, there exists a submodule K of M, such that M = N + K with N  K K. A condition under which the direct sum of FI-J-supplemented modules is FI-J-supplemented was given. Also, some types of modules that are related to the FI-J-supplemented module were discussed.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Jordan Generalized (μ,ρ)-Reverse Derivation from
...Show More Authors

In this study, we introduce and study the concepts of generalized ( , )-reverse derivation, Jordan generalized ( , )-reverse derivation, and Jordan generalized triple ( , )-reverse derivation from Γ-semiring S into ΓS-module X.  The most important findings of this paper are as follows:

If S is Γ-semiring and X is ΓS-module, then every Jordan generalized ( , )- reverse derivations from S into X associated with Jordan ( , )-reverse derivation d from S into X is ( , )-reverse derivation from S into X.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Supplemented and π-Projective Semimodules
...Show More Authors

In modules there is a relation between supplemented and Ï€-projective semimodules. This relation was introduced, explained and investigated by many authors. This research will firstly introduce a concept of "supplement subsemimodule" analogues to the case in modules: a subsemimodule Y of a semimodule W is said to be supplement of  a subsemimodule X if it is minimal with the property X+Y=W. A subsemimodule Y is called a supplement subsemimodule if it is a supplement of some subsemimodule of W. Then, the concept of supplemented semimodule will be defined as follows: an S-semimodule W is said to be supplemented if every subsemimodule of W is a supplemen

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref