The aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
This paper is concerned with introducing and studying the first new approximation operators using mixed degree system and second new approximation operators using mixed degree system which are the core concept in this paper. In addition, the approximations of graphs using the operators first lower and first upper are accurate then the approximations obtained by using the operators second lower and second upper sincefirst accuracy less then second accuracy. For this reason, we study in detail the properties of second lower and second upper in this paper. Furthermore, we summarize the results for the properties of approximation operators second lower and second upper when the graph G is arbitrary, serial 1, serial 2, reflexive, symmetric, tra
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
This paper deals to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th
... Show MoreAdsorption and ion exchange are examples of fixed-bed sorption processes that show transient behavior. This means that differential equations are needed to design them. As a result, numerical methods are commonly utilized to solve these equations. The solution frequently used in analytical methods is called the Thomas solution. Thomas gave a complete solution that adds a nonlinear equilibrium relationship that depends on second-order reaction kinetics. A computational approach was devised to solve the Thomas model. The Thomas model's validity was established by conducting three distinct sets of experiments. The first entails the adsorption of acetic acid from the air through the utilization of activated carbon. Following
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments
Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and tape
... Show MoreAbstract
In this study, we compare between the autoregressive approximations (Yule-Walker equations, Least Squares , Least Squares ( forward- backword ) and Burg’s (Geometric and Harmonic ) methods, to determine the optimal approximation to the time series generated from the first - order moving Average non-invertible process, and fractionally - integrated noise process, with several values for d (d=0.15,0.25,0.35,0.45) for different sample sizes (small,median,large)for two processes . We depend on figure of merit function which proposed by author Shibata in 1980, to determine the theoretical optimal order according to min
... Show More