Preferred Language
Articles
/
3BaeR4cBVTCNdQwCwkBF
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. Therefore, this work is focused function approximation-based control algorithms considering centralized and decentralized approaches. In this work, the following control algorithms are designed: (1) Adaptive hybrid regressor-approximation control. This work attempts to combine the features of both the regressor and the approximation techniques in adaptive control. The regressor technique is a powerful tool for adaptive control of the known structure of modeling while the approximation is useful for estimation of time-varying uncertainty. Therefore, this work proposes adaptive hybrid regressor and approximation control for robots in both free and constrained spaces. The control law consists of three terms: (i) regressor term for initial estimation of the known structure of the robot dynamics, e.g. inertia matrix, Coriolis and centripetal matrix and gravity vector, and (ii) approximation term for estimation of internal and external disturbances resulted from the inexact calculation of regressor matrix and unknown modeling of friction, etc, and (iii) robust term consists of switching sgn(.) function. The control law is designed based on updating the uncertain parameters and the weighting coefficients corresponding to regressor and approximation respectively with position/force tracking purposes. The proposed controller is stable in the sense of Lyapunov stability. (2) Decentralized adaptive partitioned approximation control. Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design feedforward control with improved tracking accuracy. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Simulation experiments on 2-link robot and 6-link biped robot are performed to prove the effectiveness of the proposed algorithms.

View Publication
Publication Date
Sun May 20 2018
Journal Name
Romansy 22 – Robot Design, Dynamics And Control
Decentralized Adaptive Partitioned Approximation Control of Robotic Manipulators
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Fri Oct 12 2018
Journal Name
International Journal Of Dynamics And Control
Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes
...Show More Authors

View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Robotic Manipulators with Contact-Free Motion
...Show More Authors

View Publication
Scopus (16)
Crossref (10)
Scopus Crossref
Publication Date
Tue Jan 10 2017
Journal Name
International Journal Of Dynamics And Control
On local approximation-based adaptive control with applications to robotic manipulators and biped robots
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Thu Oct 18 2018
Journal Name
Applied Bionics And Biomechanics
Active Impedance Control of Bioinspired Motion Robotic Manipulators: An Overview
...Show More Authors

There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstabl

... Show More
View Publication
Scopus (54)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Piezoelectric Flexible Beams
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Wed Mar 13 2024
Journal Name
Journal Of Robotics
Hierarchical Stabilization and Tracking Control of a Flexible-Joint Bipedal Robot Based on Anti-Windup and Adaptive Approximation Control
...Show More Authors

Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Mechanical Engineering And Robotics Research
Adaptive Approximation-Based Feedback Linearization Control for a Nonlinear Smart Thin Plate
...Show More Authors

This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 06 2013
Journal Name
Robotica
Function approximation technique-based adaptive virtual decomposition control for a serial-chain manipulator
...Show More Authors
SUMMARY<p>The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The contr</p> ... Show More
View Publication
Scopus (26)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Journal Européen Des Systèmes Automatisés
Proxy-based sliding mode vibration control with an adaptive approximation compensator for euler-bernoulli smart beams
...Show More Authors

Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho

... Show More
Crossref (2)
Crossref