Preferred Language
Articles
/
JhYwSIcBVTCNdQwCIkEn
Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun May 20 2018
Journal Name
Romansy 22 – Robot Design, Dynamics And Control
Decentralized Adaptive Partitioned Approximation Control of Robotic Manipulators
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Fri Sep 18 2020
Journal Name
Hal Open Science
Adaptive Approximation Control of Robotic Manipulators: Centralized and Decentralized Control Algorithms
...Show More Authors

The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri

... Show More
View Publication
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Robotic Manipulators with Contact-Free Motion
...Show More Authors

View Publication
Scopus (16)
Crossref (10)
Scopus Crossref
Publication Date
Tue Jan 10 2017
Journal Name
International Journal Of Dynamics And Control
On local approximation-based adaptive control with applications to robotic manipulators and biped robots
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Thu Oct 18 2018
Journal Name
Applied Bionics And Biomechanics
Active Impedance Control of Bioinspired Motion Robotic Manipulators: An Overview
...Show More Authors

There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstabl

... Show More
View Publication
Scopus (50)
Crossref (41)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Fuzzy Control of the Robotic Hands Catching Force Using Muscle Wires Actuator
...Show More Authors

The aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Mathematical Models And Computer Simulations
Function Approximation Technique (FAT)-Based Adaptive Feedback Linearization Control for Nonlinear Aeroelastic Wing Models Considering Different Actuation Scenarios
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Tue May 01 2018
Journal Name
2018 2nd Ieee Advanced Information Management,communicates,electronic And Automation Control Conference (imcec)
Hybrid Regressor and Approximation-Based Adaptive Control of Piezoelectric Flexible Beams
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
International Journal Of Mechanical Engineering And Robotics Research
Adaptive Approximation-Based Feedback Linearization Control for a Nonlinear Smart Thin Plate
...Show More Authors

This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Mar 13 2024
Journal Name
Journal Of Robotics
Hierarchical Stabilization and Tracking Control of a Flexible-Joint Bipedal Robot Based on Anti-Windup and Adaptive Approximation Control
...Show More Authors

Bipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref