The use of Bayesian approach has the promise of features indicative of regression analysis model classification tree to take advantage of the above information by, and ensemble trees for explanatory variables are all together and at every stage on the other. In addition to obtaining the subsequent information at each node in the construction of these classification tree. Although bayesian estimates is generally accurate, but it seems that the logistic model is still a good competitor in the field of binary responses through its flexibility and mathematical representation. So is the use of three research methods data processing is carried out, namely: logistic model, and model classification regression tree, and bayesian regression tree model. Having been in this research compare these methods form a model for additive function to some nonparametric function. It was a trade-off between these process models based on the classification accuracy by misclassification error, and estimation accuracy by the root of the mean squares error: RMSE. It was the application on patients with diabetes data for those aged 15 years and below are taken from the sample size (200) was withdrawn from the Children Hospital in Al-Eskan / Baghdad.
The aim of this study is to design a proposed model for a document to insure the mistakes of the medical profession in estimating the compensation for medical errors. The medical profession is an honest profession aimed primarily at serving human and human beings. In this case, the doctor may be subject to error and error , And the research has adopted the descriptive approach and the research reached several conclusions, the most prominent of which is no one to bear the responsibility of medical error, although the responsibility shared and the doctor contributes to them, doctors do not deal with patients according to their educational level and cultural and there are some doctors do not inform patients The absence of a document to insu
... Show MoreThe relationships between the related parties constitute a normal feature of trading and business processes. Entities may perform parts of their activities through subsidiary entities, joint ventures and associate entities. In these cases, the entity has the ability to influence the financial and operating policies of the investee through control, joint control or significant influence, So could affect established knowledge of transactions and balances outstanding, including commitments, and relationships with related to the evaluation of its operations by users of financial statements, including the risks and opportunities facing the entity assess the parties. So research has gained importance of the importance of the availability
... Show MoreIn order to achieve overall balance in the economy to be achieved in different markets and at one time (market commodity, monetary and labor market and the balance of payments and public budget), did not provide yet a model from which to determine the overall balance in the economy and the difficulty of finding the inter-relationship between all these markets and put them applied in the form of allowing the identification of balance in all markets at once.
One of the best models that have dealt with this subject is a model
(LM-BP-IS), who teaches balance in the commodity market and money market and balance of payments and the importance of this issue This research tries to shed light on the reality
It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreAbstract:
Interest in the topic of prediction has increased in recent years and appeared modern methods such as Artificial Neural Networks models, if these methods are able to learn and adapt self with any model, and does not require assumptions on the nature of the time series. On the other hand, the methods currently used to predict the classic method such as Box-Jenkins may be difficult to diagnose chain and modeling because they assume strict conditions.
... Show More
Based on the diazotization-coupling reaction, a new, simple, and sensitive spectrophotometric method for determining of a trace amount of (BPF) is presented in this paper. Diazotized metoclopramide reagent react with bisphenol F produces an orange azo-compound with a maximum absorbance at 461 nm in alkaline solution. The experimental parameters were optimized such as type of alkaline medium, concentration of NaOH, diazotized metoclopramide amount, order additions, reaction time, temperature, and effect of organic solvents to achieve the optimal performance for the proposed method. The absorbance increased linearly with increasing bisphenol F concentration in the range of 0.5-10 μg mL-1 under ideal conditions, with a correlati
... Show MoreResearchers have increased interest in recent years in determining the optimum sample size to obtain sufficient accuracy and estimation and to obtain high-precision parameters in order to evaluate a large number of tests in the field of diagnosis at the same time. In this research, two methods were used to determine the optimum sample size to estimate the parameters of high-dimensional data. These methods are the Bennett inequality method and the regression method. The nonlinear logistic regression model is estimated by the size of each sampling method in high-dimensional data using artificial intelligence, which is the method of artificial neural network (ANN) as it gives a high-precision estimate commensurate with the dat
... Show MoreVideo steganography has become a popular option for protecting secret data from hacking attempts and common attacks on the internet. However, when the whole video frame(s) are used to embed secret data, this may lead to visual distortion. This work is an attempt to hide sensitive secret image inside the moving objects in a video based on separating the object from the background of the frame, selecting and arranging them according to object's size for embedding secret image. The XOR technique is used with reverse bits between the secret image bits and the detected moving object bits for embedding. The proposed method provides more security and imperceptibility as the moving objects are used for embedding, so it is difficult to notice the
... Show MoreAs the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show More