Preferred Language
Articles
/
uxhbF5cBVTCNdQwCUZWH
Bernoulli Polynomials Method for Solving Integral Equations with Singular Kernel
...Show More Authors

هناك دائما حاجة إلى طريقة فعالة لتوليد حل عددي أكثر دقة للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة لأن الطرق العددية لها محدودة. في هذه الدراسة ، تم حل المعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة باستخدام طريقة متعددة حدود برنولي. الهدف الرئيسي من هذه الدراسة هو ايجاد حل تقريبي لمثل هذه المشاكل في شكل متعددة الحدود في سلسلة من الخطوات المباشرة. أيضا ، تم افتراض أن مقام النواة لن يكون صفرا أبدا أو أن يكون له قيمة عقدية بسبب اختيارالعقد المحددة لمتغيري النواة الوحيدين. مع متعددات حدود برنولي من الدرجة 4 و 8 كمثال على ذلك، يوفر النهج الحالي حلا قريبا جدا من الحل الدقيق في أمثلة الاختبار. بينما. يثبت الحجم المتواضع جدا للأخطاء في أمثلة الاختبار فعالية الاستراتيجية الحالية. أيضا ، فإن السهولة التي يمكن بها تنفيذ برنامج الكمبيوتر تجعل هذه التقنية فعالة للغاية. هدف آخر هو تحديد كفاءة الطريقة المقترحة من خلال مقارنتها بأساليب مختلفة. يظهر أن الحل التقريبي للمعادلات التكاملية ذات النواة المفردة أو المفردة الضعيفة يتقارب بشدة مع الحل المضبوط للمعادلات باستخدام متعددة حدود برنولي وهو متفوق على تلك الموجودة في الأساليب الأخرى المذكورة. هذا يضمن الأصالة والدقة العالية للطريقة المقترحة. كذلك تمت مناقشة تقارب الحل. تم تنفيذ البرامج باستخدام برنامج ال MATLAB النسخة 2018a .

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Robust Two-Step Estimation and Approximation Local Polynomial Kernel For Time-Varying Coefficient Model With Balance Longitudinal Data
...Show More Authors

      In this research, the nonparametric technique has been presented to estimate the time-varying coefficients functions for the longitudinal balanced data that characterized by observations obtained through (n) from the independent subjects, each one of them is measured repeatedly by group of  specific time points (m). Although the measurements are independent among the different subjects; they are mostly connected within each subject and the applied techniques is the Local Linear kernel LLPK technique. To avoid the problems of dimensionality, and thick computation, the two-steps method has been used to estimate the coefficients functions by using the two former technique. Since, the two-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
...Show More Authors

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Wed Apr 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear COVID-19 Mathematical Model Using a Reliable Numerical Method
...Show More Authors

This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COV

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 03 2021
Journal Name
Entropy
Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials
...Show More Authors

Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the

... Show More
View Publication
Scopus (34)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sun Aug 06 2023
Journal Name
Journal Of Economics And Administrative Sciences
Probit and Improved Probit Transform-Based Kernel Estimator for Copula Density
...Show More Authors

Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The

... Show More
Publication Date
Mon Apr 15 2019
Journal Name
Proceedings Of The International Conference On Information And Communication Technology
Orthogonal polynomial embedded image kernel
...Show More Authors

View Publication
Scopus (25)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Phase Fitted And Amplification Fitted Of Runge-Kutta-Fehlberg Method Of Order 4(5) For Solving Oscillatory Problems
...Show More Authors

In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref