Preferred Language
Articles
/
pxahtIcBVTCNdQwCRVwm
Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients

Crossref
View Publication
Publication Date
Sun Jul 01 2012
Journal Name
International Journal Of Computer Mathematics
Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods

View Publication
Crossref (11)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods

View Publication
Crossref (9)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients

View Publication
Crossref (19)
Crossref
Publication Date
Mon Aug 14 2017
Journal Name
International Journal Of Intelligent Computing And Cybernetics
Two efficient methods for solving Schlömilch’s integral equation
Purpose

In this paper, the exact solutions of the Schlömilch’s integral equation and its linear and non-linear generalized formulas with application are solved by using two efficient iterative methods. The Schlömilch’s integral equations have many applications in atmospheric, terrestrial physics and ionospheric problems. They describe the density profile of electrons from the ionospheric for awry occurrence of the quasi-transverse approximations. The paper aims to discuss these issues.

Design/methodology/approach

First, the authors apply a regularization meth

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Mon May 04 2009
Journal Name
Journal Of Al-nahrain University
Solution of two-dimensional fractional order volterra integro-differential equations

In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Finding timewise diffusion coefficient from nonlocal integral condition in one-dimensional heat equation

View Publication
Scopus Crossref
Publication Date
Tue Mar 16 2021
Journal Name
International Journal For Computational Methods In Engineering Science And Mechanics
Determination of time-dependent coefficients in moving boundary problems under nonlocal and heat moment observations

View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Thu Apr 26 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
New Approach for Solving (1+1)-Dimensional Differential Equation

View Publication Preview PDF
Scopus (16)
Crossref (6)
Scopus Crossref