Preferred Language
Articles
/
uhZcn4oBVTCNdQwC9KGO
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CNN infrastructure. Findings: The results acquired through the investigated CBIR system alongside the benchmarked results have clearly indicated that the suggested technique had the best performance with the overall accuracy at 88.29% as opposed to the other sets of data adopted in the experiments. The outstanding results indicate clearly that the suggested method was effective for all the sets of data. Improvements/Applications: As a result of this study, it was found the revealed that the multiple image representation was redundant for extraction accuracy, and the findings from the study indicated that automatically retrieved features are capable and reliable in generating accurate outcomes.

Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Estimating Pitting Corrosion Depth and Density on Carbon Steel (C-4130) using Artificial Neural Networks

The purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 31 2022
Journal Name
International Journal Of Intelligent Engineering And Systems
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 20 2019
Journal Name
Baghdad Science Journal
A Comparative Analysis of the Zernike Moments for Single Object Retrieval

Zernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s

... Show More
Crossref (2)
Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Iraqi Journal Of Science
A new Color image Encryption based on multi Chaotic Maps

     This paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of   1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.   

View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
A New Image Encryption Algorithm Based on Multi Chaotic System

       In recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of al

... Show More
Scopus (14)
Crossref (10)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 28 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 25 2014
Journal Name
Sensors
Scopus (37)
Crossref (28)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Sep 26 2018
Journal Name
Communications In Computer And Information Science
Scopus (1)
Scopus Clarivate Crossref
View Publication