Transportation and distribution are the most important elements in the work system for any company, which are of great importance in the success of the chain work. Al-Rabee factory is one of the largest ice cream factories in Iraq and it is considered one of the most productive and diversified factories with products where its products cover most areas of the capital Baghdad, however, it lacks a distribution system based on scientific and mathematical methods to work in the transportation and distribution processes, moreover, these processes need a set of important data that cannot in any way be separated from the reality of fuzziness industrial environment in Iraq, which led to use the fuzzy sets theory to reduce the levels of uncertainty. The decision-maker has several goals that he aspires to accomplish for two stages, so, the decision-maker adopted in his work system on a multi-objective travelling salesman problem. A network of paths for transportation and distribution of the products has been designed based on a multi-objective travelling salesman problem, by building a mathematical model that finds the best paths for each stage, taking into account the goals required by the decision-maker. The results obtained from the use of (Lingo) software showed the importance of these methods in determining the optimal path for the processes of collecting and transporting milk from their collection centers to the Al-Rabee factory as a first stage, as well as transporting the final products and distributing them from the Al-Rabee factory to the shopping centers as a second stage.
The traveling salesman problem (TSP) is a well-known and important combinatorial optimization problem. The goal is to ï¬nd the shortest tour that visits each city in a given list exactly once and then returns to the starting city. In this paper we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi cities. So two main methods are investigated to solve this problem; these methods are; Dynamic Programming (DP) and Branch and Bound Technique (BABT). For the BABT, more than one lower and upper bounds are be derived to gain the best one. The results of BABT are completely identical to DP, with less time for number of cities (n), 5 ≤ n ≤ 25. These results proof the efficiency of BABT compared with so
... Show MoreAchieving energy-efficient Wireless Sensor Network (WSN) that monitors all targets at
all times is an essential challenge facing many large-scale surveillance applications.Singleobjective
set cover problem (SCP) is a well-known NP-hard optimization problem used to
set a minimum set of active sensors that efficiently cover all the targeted area. Realizing
that designing energy-efficient WSN and providing reliable coverage are in conflict with
each other, a multi-objective optimization tool is a strong choice for providing a set of
approximate Pareto optimal solutions (i.e., Pareto Front) that come up with tradeoff
between these two objectives. Thus, in the context of WSNs design problem, our main
contribution is to
This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show MoreEstablishing complete and reliable coverage for a long time-span is a crucial issue in densely surveillance wireless sensor networks (WSNs). Many scheduling algorithms have been proposed to model the problem as a maximum disjoint set covers (DSC) problem. The goal of DSC based algorithms is to schedule sensors into several disjoint subsets. One subset is assigned to be active, whereas, all remaining subsets are set to sleep. An extension to the maximum disjoint set covers problem has also been addressed in literature to allow for more advance sensors to adjust their sensing range. The problem, then, is extended to finding maximum number of overlapped set covers. Unlike all related works which concern with the disc sensing model, the cont
... Show MoreThis paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
he assignment model represents a mathematical model that aims at expressing an important problem facing enterprises and companies in the public and private sectors, which are characterized by ensuring their activities, in order to take the appropriate decision to get the best allocation of tasks for machines or jobs or workers on the machines that he owns in order to increase profits or reduce costs and time As this model is called multi-objective assignment because it takes into account the factors of time and cost together and hence we have two goals for the assignment problem, so it is not possible to solve by the usual methods and has been resorted to the use of multiple programming The objectives were to solve the problem of
... Show MoreThere are several methods that are used to solve the traditional transportation problems whose units of supply, demand quantities, and cost transportation are known exactly. These methods obtain basic solution, and develop it to the best solution through a series of consecutive calculations to obtain the optimal solution.
The steps are more complex with fuzzy variables, so this paper presents the disadvantages of solutions of the traditional ways with existence of variables in the fuzzy form.
This paper also presents a comparison between the results that emerged after using different conversion ranking formulas to convert from fuzzy form to crisp form on the same numerical example with a full fuzz