Preferred Language
Articles
/
uRbDGIcBVTCNdQwC7TY_
Selection of an Optimum Drilling Fluid Model to Enhance Mud Hydraulic System Using Neural Networks in Iraqi Oil Field
...Show More Authors

In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss is a gathering of numerous issues for example rheology of mud), flow regime and the well geometry. An artificial neural network (ANN) that used in this effort is an accurate or computational model stimulated by using JMP software. The aim of this study is to find out the effect of rheological models on the hydraulic system and to use the artificial neural network to simulate the parameters that were used as emotional parameters and then find an equation containing the parameters μp, Yp and P Yp/ μp to calculate the pressure losses in a hydraulic system. Data for 7 intermediate casing wells with 12.25" hole size and 95/8" intermediate casing size are taken from the southern Iraq field used for the above purpose. Then compare the result with common equations used to calculate pressure losses in a hydraulic system. Also, we calculate the optimum flow by the maximum impact force method and then offset in Equation obtained by (Joint Marketing Program) JMP software. Finally, the equation that was found to calculate pressure losses instead of using common hydraulic equations with long calculations gave very close results with less calculation.                                                                                 

Crossref
View Publication
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
The Effect of Hydraulic Accumulator on the Performance of Hydraulic System
...Show More Authors

The purpose of this paper is to depict the effect of adding a hydraulic accumulator to a hydraulic system. The experimental work includes using measuring devices with interface to measure the pressure and the vibration of the system directly by computer so as to show the effect of accumulator graphically for real conditions, also the effects of hydraulic accumulator for different applications
have been tested. A simulation analysis of the hydraulic control system using MATLAB.R2010b to study was made to study the stability of the system depending on the transfer function, to estimate the effect of adding the accumulator on stability of the system. A physical simulation test was made for the hydraulic system using MATLAB to show the ef

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Calibrating the Reservoir Model of the Garraf Oil Field
...Show More Authors

   History matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 07 2008
Journal Name
Baghdad Science Journal
Hybrid Cipher System using Neural Network
...Show More Authors

The objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 02 2015
Journal Name
Al-khwarizmi Engineering Journal
Stabilizing Gap of Pole Electric Arc Furnace Using Smart Hydraulic System
...Show More Authors

Preview PDF
Publication Date
Sat Feb 28 2015
Journal Name
Al-khwarizmi Engineering Journal
Stabilizing Gap of Pole Electric Arc Furnace Using Smart Hydraulic System
...Show More Authors

Abstract

Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS), in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to stud

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2013
Journal Name
Thesis
User Authentication Based on Keystroke Dynamics Using Artificial Neural Networks
...Show More Authors

Computer systems and networks are being used in almost every aspect of our daily life, the security threats to computers and networks have increased significantly. Usually, password-based user authentication is used to authenticate the legitimate user. However, this method has many gaps such as password sharing, brute force attack, dictionary attack and guessing. Keystroke dynamics is one of the famous and inexpensive behavioral biometric technologies, which authenticate a user based on the analysis of his/her typing rhythm. In this way, intrusion becomes more difficult because the password as well as the typing speed must match with the correct keystroke patterns. This thesis considers static keystroke dynamics as a transparent layer of t

... Show More
Publication Date
Tue Sep 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Density and Approximation by Using Feed Forward Artificial Neural Networks
...Show More Authors

I n  this  paper ,we 'viii  consider  the density  questions  associC;lted with  the single  hidden layer feed forward  model. We proved  that a FFNN   with   one   hidden   layer  can   uniformly   approximate   any continuous  function  in C(k)(where k is a compact set in R11 ) to any required accuracy.

 

However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function  non-dense, then we  need more  hidden layers. Also, we have shown  that there exist  localized functions and that there is no t

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Facial Emotion Recognition from Videos Using Deep Convolutional Neural Networks
...Show More Authors

Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.

View Publication Preview PDF
Scopus (44)
Crossref (32)
Scopus Crossref
Publication Date
Fri Sep 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Different Surfactants to Increase Oil Recovery of Rumaila Field (Experimental Work)
...Show More Authors

Enhanced oil recovery is used in many mature oil reservoirs to increase the oil recovery factor. Surfactant flooding has recently gained interest again. To create micro emulsions at the interface between crude oil and water, surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, thus achieving very low interfacial tension, which consequently assists mobilize the trapped oil.

In this study a flooding system, which has been  manufactured and described at high pressure. The flooding processes included oil, water and surfactants. 15 core holders has been prepared at first stage of the experiment and  filled with washed sand grains 80-500 mm and then packing the sand to obtain sand packs

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Multiphase Flow Behavior Prediction and Optimal Correlation Selection for Vertical Lift Performance in Faihaa Oil Field, Iraq
...Show More Authors

In the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref