Preferred Language
Articles
/
uRbDGIcBVTCNdQwC7TY_
Selection of an Optimum Drilling Fluid Model to Enhance Mud Hydraulic System Using Neural Networks in Iraqi Oil Field
...Show More Authors

In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss is a gathering of numerous issues for example rheology of mud), flow regime and the well geometry. An artificial neural network (ANN) that used in this effort is an accurate or computational model stimulated by using JMP software. The aim of this study is to find out the effect of rheological models on the hydraulic system and to use the artificial neural network to simulate the parameters that were used as emotional parameters and then find an equation containing the parameters μp, Yp and P Yp/ μp to calculate the pressure losses in a hydraulic system. Data for 7 intermediate casing wells with 12.25" hole size and 95/8" intermediate casing size are taken from the southern Iraq field used for the above purpose. Then compare the result with common equations used to calculate pressure losses in a hydraulic system. Also, we calculate the optimum flow by the maximum impact force method and then offset in Equation obtained by (Joint Marketing Program) JMP software. Finally, the equation that was found to calculate pressure losses instead of using common hydraulic equations with long calculations gave very close results with less calculation.                                                                                 

Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Computers, Materials & Continua
An Optimal Method for Supply Chain Logistics Management Based on Neural Network
...Show More Authors

View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jun 05 2014
Journal Name
Arabian Journal Of Geosciences
Applying the cluster analysis technique in logfacies determination for Mishrif Formation, Amara oil field, South Eastern Iraq
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
An Evolutionary Algorithm With Heuristic Operator for Detecting Protein Complexes in Protein Interaction Networks With Negative Controls
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Egyptian Journal Of Petroleum
Identification of the best correlations of permeability anisotropy for Mishrif reservoir in West Qurna/1 oil Field, Southern Iraq
...Show More Authors

View Publication
Scopus (16)
Crossref (11)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Using stress tests to manage credit concentration risks: An applied research in Sumer Commercial Bank
...Show More Authors

The research aims to identify banking stress tests, which is one of the modern and important tools in managing banking risks by applying the equations of that tool to the sample. The banking sector considered one of the most vulnerable to sudden and rapid changes in an unstable economic environment, making it more vulnerable. Therefore, it is necessary to establish a special risk management section to reduce the banking risks of the banking business that negatively affect its performance.

The research concluded that there is a direct relationship between stress tests and risk management, as stress tests are an essential tool in risk management. They also considered a unified approach in managing bank risks that helps the bank to

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Hydrodynamic Pressure Gradient Correlation of Some Iraqi Oil Wells
...Show More Authors

Empirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
Viscosity reduction of Iraqi crude oil by different additives
...Show More Authors

The high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed o

... Show More
View Publication Preview PDF
Crossref (4)
Crossref