Preferred Language
Articles
/
jBbM6IYBVTCNdQwC4RiU
Viscosity reduction of Iraqi crude oil by different additives
...Show More Authors

The high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed on the heavy oil sample using different solvents (Ethanol, n-Propanol and methyl ethyl ketone (MEK)). Among all the types used, the MEK was found most efficient viscosity reducer of heavy crude oil, the maximum viscosity reduction reached to 3.78 cSt at 75oC and 26 API at 25oC while the other solvents for n-Propanol 5.85 cSt at 75oC and 24.61 API at 25oC while for ethanol 5.96 cSt at 75oC and 27 API at 27oC

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Viscosity Reduction of Sharqi Baghdad Heavy Crude Oil Using Different Polar Hydrocarbons, Oxygenated Solvents
...Show More Authors

This work studied the facilitation of the transportation of Sharqi Baghdad heavy crude oil characterized with high viscosity 51.6 cSt at 40 °C, low API 18.8, and high asphaltenes content 7.1 wt.%, by reducing its viscosity from break down asphaltene agglomerates using different types of hydrocarbon and oxygenated polar solvents such as toluene, methanol, mix xylenes, and reformate. The best results are obtained by using methanol because it owns a high efficiency to reduce viscosity of crude oil to 21.1 cSt at 40 °C. Toluene, xylenes and reformate decreased viscosity to 25.3, 27.5 and 28,4 cSt at 40 °C, respectively. Asphaltenes content decreased to 4.2 wt. % by using toluene at 110 °C. And best improvement in API of the heavy crude o

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
New Viscosity Correlation for Different Iraqi Oil Fields
...Show More Authors

 

Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 30 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Problems of Heavy Oil Transportation in Pipelines And Reduction of High Viscosity
...Show More Authors

Drag has long been identified as the main reason for the loss of energy in fluid transmission like pipelines and other similar transportation channels. The main contributor to this drag is the viscosity as well as friction against the pipe walls, which will results in more pumping power consumption.

   The aim in this study was first to understand the role of additives in the viscosity reduction and secondly to evaluate the drag reduction efficiency when blending with different solvents.

   This research investigated flow increase (%FI) in heavy oil at different flow rates (2 to 10 m3/hr) in two pipes (0.0381 m & 0.0508 m) ID By using different additives (toluene and naphtha) with different concent

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Catalytic Pour Point Reduction and Viscosity Improvement of Lubricating Oil Fractions using Sulfided Nickel-Tungsten Catalysts
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Jun 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Drag Reduction of Crude Oil Flow in Pipelines Using Sodium Dodecyl Benzene Sulfonate Surfactant
...Show More Authors

In the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant  (SDBS )with  concentrations  of (50,  100,  150, 200 and 250 ppm)  was tested as a drag reducing  agent.  The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Reducing the evaporation of stored Iraqi crude oil
...Show More Authors

In order to reduce the losses due to evaporation in the stored crude oil and minimizing the decrease in °API many affecting parameters were studied (i.e. Different storage system, namely batch system with different types of storage tanks under different temperatures and:or different pressures). Continuous circulation storage system was also studied. It was found that increasing pressure of the inert gas from 1 bar to 8 bar over the surface of the crude oil will decrease the percentage losses due to evaporation by (0.016%) and decrease the change of °API by (0.9) during 96 hours storage time. Similarly using covering by surfactant (potassium oleate) or using polymer (polyurethane foam) decreases the percentage evaporation losses compare

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Engineering
Demulsification of Water in Iraqi Crude Oil Emulsion
...Show More Authors

Formation of emulsions during oil production is a costly problem, and decreased water content in emulsions leads to increases productivity and reduces the potential for pipeline corrosion and equipment used. The chemical demulsification process of crude oil emulsions is one of the methods used for reducing water content. The demulsifier presence causes the film layer between water droplets and the crude oil emulsion that to become unstable, leading to the accelerated of water coalescence. This research was performed to study the performance of a chemical demulsifier Chimec2439 (commercial) a blend of non-ionic oil-soluble surfactants. The crude oils used in these experiments were Basrah and Kirkuk Iraqi crude oil. These

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref
Publication Date
Thu Dec 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Oil Removal from Wastewater of Al-Bezerqan Crude Oil Fields by Air Flotation
...Show More Authors

View Publication Preview PDF