Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
Both of the species Typha domengensis and Phragmites communis among the most important plant endemic in flora of Iraq from monocotyledon. Due to the similarity of the two species with each other in many morphological characteristics such as the environment where they live and the form of leaves and type of leaf venation and type of stomata….ets, also both of species belong to monocots plant therefore this research work was conducted find anatomical differences that have the same as taxonomic value to help distinguishing between both species under study. Through this research, we found great importance to the anatomical characteristics which we reached by studying the roots, stems and leaves sections f
... Show MoreAlteration in the backbone structure of the endogenously released opioid peptides Leu5/Met5 enkephalins may result in compounds having comparable profile of pharmacological activity but with different physicochemical properties and side effects. Phthalyl amino acid and phthalyl esters are among the derivatives that have been synthesized and evaluated for their antibacterial and antifungal activities.This study was conducted to evaluate the possible analgesic activity of phthalyl-tyrosyl-glycin sodium that has been recently synthesized by our team.The study was carried out on 24 albino mice using hot plate method. The animals were allocated in to three groups; the first group received saline and represent a control g
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreThe university Service employee is considered one of the categories of public employees, However, The academic and administrative tasks duties that undertakes have made him a special importance and a distinguished legal status, Therefore, we find That the Iraqi legislatures assigned this category a special Law, it is the university Service law No (23) of 2008 as amended who dealt with some aspects related to serving this category, such as duties, right, condition for appointment and award of academic titles, and financial allocation, such as university service allocation, academic title allocations, and some other Provisions leaving other matters to the general service laws and employee discipline, among the matters that the legislator negl
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverseosmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosismembranes are made from polyamide as spiral wound module. The inorganic materials ZnCl 2 CuCl2 .2H2O, NiCl.2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parametersstudied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeateconcentration increased and water flux decreased with increase in time from 0 to 70 min. Thepermeate concentrations incre
... Show More