The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue color information. The purpose of this paper is to give the reader a deeper view of (1) enhancing the efficiency of distinguishing fake facial images from real facial images by developing a novel model based on deep learning and Gabor filters and (2) how deep learning (CNN) if combined with forensic tools (Gabor filters) contributed to the detection of deepfakes. Our experiment shows that the training accuracy reaches about 98.06% and 97.50% validation. Likened to the state-of-the-art methods, the proposed model has higher efficiency.
The importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure. The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts. The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling execution safer and more economical by reducin
... Show MoreThe importance of kick tolerance in well operations has recently increased due to its implications in well design, in drilling and well control. To study a simple method for the application of kick tolerance concept in an effective way on the basis of field data, this research purpose is to improve knowledge about Kick Tolerance and represents a technical basis for the discussion on revision of standard procedure.
The objective of this work is to review and to present a methodology of determination the kick tolerance parameters using the circulation kicks tolerance concepts.
The proposed method allows to know, to evaluate and to analyze the kick tolerance problem in order to make the drilling exe
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show Moreتتبلور فكرة البحث حول التوصل لنوع العلاقة التي تربط التعليم الالكتروني خلال جائحة كورونا برفع المهارات التكنولوجية للأساتذة والطلاب، وتبرز أهمية البحث في ان نجاح الوصول لهذه العلاقة يمكن الإفادة منها في تغيير منهجية تطوير المهارات التكنولوجية مستقبلا وذلك باعتماد الجوانب التطبيقية الفعلية بدلا من الدورات وورش العمل والتي قد لا تضاهي الطريقة العملية في رفع مستوى المهارات المختلفة سواء التدريسية او التكنو
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreInvestigating the strength and the relationship between the Self-organized learning strategies and self-competence among talented students was the aim of this study. To do this, the researcher employed the correlation descriptive approach, whereby a sample of (120) male and female student were selected from various Iraqi cities for the academic year 2015-2016. the researcher setup two scales based on the previous studies: one to measure the Self-organized learning strategies which consist of (47) item and the other to measure the self-competence that composed of (50) item. Both of these scales were applied on the targeted sample to collect the required data