Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.
The paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show MoreAs the bit rate of fiber optic transmission systems is increased to more than , the system will suffer from an important random phenomena, which is called polarization mode dispersion. This phenomenon contributes effectively to: increasing pulse width, power decreasing, time jittering, and shape distortion. The time jittering means that the pulse center will shift to left or right. So that, time jittering leads to interference between neighboring pulses. On the other hand, increasing bit period will prevent the possibility of sending high rates. In this paper, an accurate mathematical analysis to increase the rates of transmission, which contain all physical random variables that contribute to determine the transmission rates, is presen
... Show MoreDemography or population studies or demography is the science that is based on the different characteristics of the population scientific study, and represent a population studies principled way to understand the population of society, in addition to verification of the population in a given area determine the reason for the increase or decrease this number from the previous statistical As these studies estimate future trends for the occurrence of demographic change in terms of birth, death and migration That the registration of deaths of paramount importance narrated that way can the demographic reality of the population analysis, and coverage of the health authorities' needs and enable government institutions of decision-making
... Show MoreObjective: To generate a model that conceptualizes the phenomenon of health promotion and its related factors.
Methodology: A grounded theory methodology is used as qualitative method to explore the health promotion as
phenomenon of interest and its other related factors from the perspectives of specialists in this field. The study is
carried out from January 2002 through September 2004. A sample of (20) specialists in health sciences are
selected and interviewed as experts in the area of health promotion. The investigators conducted intensive and
structured interviews with the specialists to collect the data. These interviews were transcribed verbatim,
analyzed and interpreted.
Results: Findings of the study indicat
Many problems were encountered during the drilling operations in Zubair oilfield. Stuckpipe, wellbore instability, breakouts and washouts, which increased the critical limits problems, were observed in many wells in this field, therefore an extra non-productive time added to the total drilling time, which will lead to an extra cost spent. A 1D Mechanical Earth Model (1D MEM) was built to suggest many solutions to such types of problems. An overpressured zone is noticed and an alternative mud weigh window is predicted depending on the results of the 1D MEM. Results of this study are diagnosed and wellbore instability problems are predicted in an efficient way using the 1D MEM. Suitable alternative solutions are presented
... Show MoreThe problem of internal sulfate attack in concrete is widespread in Iraq and neighboring countries.This is because of the high sulfate content usually present in sand and gravel used in it. In the present study the total effective sulfate in concrete was used to calculate the optimum SO3 content. Regression models were developed based on linear regression analysis to predict the optimum SO3 content usually referred as (O.G.C) in concrete. The data is separated to 155 for the development of the models and 37 for checking the models. Eight models were built for 28-days age. Then a late age (greater than 28-days) model was developed based on the predicted optimum SO3 content of 28-days and late age. Eight developed models were built for all
... Show MoreLong memory analysis is one of the most active areas in econometrics and time series where various methods have been introduced to identify and estimate the long memory parameter in partially integrated time series. One of the most common models used to represent time series that have a long memory is the ARFIMA (Auto Regressive Fractional Integration Moving Average Model) which diffs are a fractional number called the fractional parameter. To analyze and determine the ARFIMA model, the fractal parameter must be estimated. There are many methods for fractional parameter estimation. In this research, the estimation methods were divided into indirect methods, where the Hurst parameter is estimated fir
... Show More