Preferred Language
Articles
/
txYj14kBVTCNdQwCpI23
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Dec 13 2020
Journal Name
International Journal On Advanced Science, Engineering And Information Technology
Robust Approach of Optimal Control for DC Motor in Robotic Arm System using Matlab Environment
...Show More Authors

Modern automation robotics have replaced many human workers in industrial factories around the globe. The robotic arms are used for several manufacturing applications, and their responses required optimal control. In this paper, a robust approach of optimal position control for a DC motor in the robotic arm system is proposed. The general component of the automation system is first introduced. The mathematical model and the corresponding transfer functions of a DC motor in the robotic arm system are presented.  The investigations of using DC motor in the robotic arm system without controller lead to poor system performance. Therefore, the analysis and design of a Proportional plus Integration plus Divertive (PID) controller is illustrated.

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (10)
Crossref (10)
Scopus Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks
...Show More Authors

Wireless Multimedia Sensor Networks (WMSNs) are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to   produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC). The Modify Spike Neural Network controller (MSNC) can calculate the appropriate traffi

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
The Intelligent Auto-Tuning Controller Design Based on Dolphin Echo Location for Blood Glucose Monitoring System
...Show More Authors

This paper presents an enhancement technique for tracking and regulating the blood glucose level for diabetic patients using an intelligent auto-tuning Proportional-Integral-Derivative PID controller. The proposed controller aims to generate the best insulin control action responsible for regulating the blood glucose level precisely, accurately, and quickly. The tuning control algorithm used the Dolphin Echolocation Optimization (DEO) algorithm for obtaining the near-optimal PID controller parameters with a proposed time domain specification performance index. The MATLAB simulation results for three different patients showed that the effectiveness and the robustness of the proposed control algorithm in terms of fast gene

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Genetic Algorithm Based PID Controller Design for a Precise Tracking of Two-Axis Piezoelectric Micropositioning Stage
...Show More Authors

 In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 01 2014
Journal Name
Al-khwarizmi Engineering Journal
Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller
...Show More Authors

Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order  PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to  torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
مجلة العلوم الاحصائية
Robust Estimator for Semiparametric Generalized Additive Model
...Show More Authors

Generalized Additive Model has been considered as a multivariate smoother that appeared recently in Nonparametric Regression Analysis. Thus, this research is devoted to study the mixed situation, i.e. for the phenomena that changes its behaviour from linear (with known functional form) represented in parametric part, to nonlinear (with unknown functional form: here, smoothing spline) represented in nonparametric part of the model. Furthermore, we propose robust semiparametric GAM estimator, which compared with two other existed techniques.

View Publication Preview PDF