A recently reported Nile red (NR) dye conjugated with benzothiadiazole species paves the way for the development of novel organic-based sensitizers used in solar cells whose structures are susceptible to modifications. Thus, six novel NR structures were derived from two previously developed structures in laboratories. In this study, density functional theory (DFT) calculations and time-dependent DFT (TD-DFT) were used to determine the optoelectronic properties of the NR-derived moieties such as absorption spectra. Various linkers were investigated in an attempt to understand the impact of π-linkers on the optoelectronic properties. According to the findings, the presence of furan species led to the planarity of the molecule and a reduction in the band gap between the LUMO and the HOMO. Each one of the aforementioned molecules exhibited great delocalization of π-electrons. Based on the TD-DFT calculations, two furans had the highest value for the red-shift. There is an excellent correlation observed between the computed optoelectronic properties and calculated HOMO-LUMO gaps. In conclusion, the current work aimed at clarifying the impact of π-linkers on the photophysical properties of the NR-derived moieties. Also, the current study provided useful insights into the development of novel species used in optoelectronic devices.
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreTelevision white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-ba
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreDigital forensics has become a fundamental requirement for law enforcement due to the growing volume of cyber and computer-assisted crime. Whilst existing commercial tools have traditionally focused upon string-based analyses (e.g., regular expressions, keywords), less effort has been placed towards the development of multimedia-based analyses. Within the research community, more focus has been attributed to the analysis of multimedia content; they tend to focus upon highly specialised specific scenarios such as tattoo identification, number plate recognition, suspect face recognition and manual annotation of images. Given the ever-increasing volume of multimedia content, it is essential that a holistic Multimedia-Forensic Analysis Tool (M-
... Show MoreThe conjunctive ''and'' and its Arabic counterpart ''و'' are discourse markers that express certain meanings and presuppose the presence of other elements in discourse. They are indispensable aids to both the text writers and readers. The present study aims to show that such cohesive ties help the writer to organize his main argument and communicate his ideas vividly and smoothly. They also serve as explicit signals that help readers unfold text and follow its threads as realized in the progression of context. The researcher has utilized the Quirk Model of Semantic Implication for data analysis. A total of 42 (22 for English and 20 for Arabic) political texts selected from different elite newspapers in both Arabic and English for the analy
... Show MoreThis study attempts to provide an approach analysis for the news, depending on the bases and principles which conceptuality semiotic researchers of this field first of them «A. J. Gremas» for the theory of «narrative discourse analysis», to more clarify we tried to apply it on a published press- news, to concludes the most important steps and methods that are necessary to follows gain more understanding of the press- news.
The Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two mai
... Show More