High frequency (HF) communications have an important role in long distances wireless communications. This frequency band is more important than VHF and UHF, as HF frequencies can cut longer distance with a single hopping. It has a low operation cost because it offers over-the-horizon communications without repeaters, therefore it can be used as a backup for satellite communications in emergency conditions. One of the main problems in HF communications is the prediction of the propagation direction and the frequency of optimum transmission (FOT) that must be used at a certain time. This paper introduces a new technique based on Oblique Ionosonde Station (OIS) to overcome this problem with a low cost and an easier way. This technique uses the
... Show More
We apply a semi classical partial-wave scattering method based on the induced density approach (IDA) model. For ion electron scattering, the transport cross section is used to calculate the energy loss. This method yields a non-perturbative exemplification of energy loss, bridging the difference among classical and quantal representations. The focus of this work is the interaction of hetero nuclear di-cluster (He-H) ions with a free gas. The results show three kinds of stopping power in (a.u) (cluster stopping power, self-stopping power and correlated stopping power) of hetero nuclear di-cluster ions (He-H) with velocity at different atomic di-cluster distances at different densities and temperatures. We find that Bragg’
... Show MoreElectron Transfer reaction rate constants at Semiconductor / Liquid interfaces are calculated dy using the Fermi Golden Rule for Semiconductor. The reorganization energy   eVï„ is computed for Semiconductor / Liquid Interfaces system in two solvents and compared with experimental value. The driving force (free energy) ΔGo(eV) is calculated depending on spectrum Ru(H2L`)2 (NCS)2 . The transfer is treated according with weak coupling (nonadiabatic) for two – state level between the Semiconductor and acceptor molecule state.
The plethora of the emerged radio frequency applications makes the frequency spectrum crowded by many applications and hence the ability to detect specific application’s frequency without distortion is a difficult task to achieve.
The goal is to achieve a method to mitigate the highest interferer power in the frequency spectrum in order to eliminate the distortion.
This paper presents the application of the proposed tunable 6th-order notch filter on Ultra-Wideband (UWB) Complementary Metal-Oxide-Semiconductor (CMOS) Low Noise