The alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.
A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solutio
... Show MoreABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreThe study aimed to assess the frequency of invasive fungal infection in patients with respiratory diseases by conventional and molecular methods. This study included 117 Broncho alveolar lavage (BAL) samples were collected from patients with respiratory disease (79 male and 38 female) with ages ranged between (20-80) years, who attended Medicine Baghdad Teaching hospital and AL-Emamain AL-Khadhymian Medical City, during the period from September 2019 to April 2020. The results in PCR versus culture methods in this study showed that out of 117 samples of fungal infections 30(25.6 %) were detected by culture method, while the 24(20.5%) samples were detected by PCR technique, the most commonly diagnosed pathogenic fungi is Candida spp.
... Show More: zonal are included in phraseological units, form metaphorical names for a person, give him various emotional and evaluative characteristics. This article examines the topic of zoomorphic metaphors that characterize a person in the Russian and Arabic languages in the aspect of their comparative analysis, since the comparative analysis of the metaphorical meanings of animalisms is an important method for studying cultural linguistics, since zoomorphic metaphors are a reflection of culture in a language.
Abstract
Magnetic abrasive finishing (MAF) process is one of non-traditional or advanced finishing methods which is suitable for different materials and produces high quality level of surface finish where it uses magnetic force as a machining pressure. A set of experimental tests was planned according to Taguchi orthogonal array (OA) L27 (36) with three levels and six input parameters. Experimental estimation and optimization of input parameters for MAF process for stainless steel type 316 plate work piece, six input parameters including amplitude of tooth pole, and number of cycle between teeth, current, cutting speed, working gap, and finishing time, were performed by design of experiment
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.