The article emphasizes that 3D stochastic positive linear system with delays is asymptotically stable and depends on the sum of the system matrices and at the same time independent on the values and numbers of the delays. Moreover, the asymptotic stability test of this system with delays can be abridged to the check of its corresponding 2D stochastic positive linear systems without delays. Many theorems were applied to prove that asymptotic stability for 3D stochastic positive linear systems with delays are equivalent to 2D stochastic positive linear systems without delays. The efficiency of the given methods is illustrated on some numerical examples. HIGHLIGHTS Various theorems were applied to prove the asymptotic stability of 3D stochastic positive linear system with delays. Moreover, this system can be reduced to 2D stochastic positive linear system without delays Asymptotic stability of 3D stochastic positive linear systems with delays depends on the summation of system matrices and independent on numbers and values of delays for that system The principal minors and the coefficients for characteristic polynomials of 3D stochastic linear systems were applied to demonstrate the asymptotic stability when they are all positive
Background: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th
... Show MoreThis paper introduces a Certain Subclass of Meromorphic Univalent Positives Coefficients Defined by the q-Difference Operator. Coefficient estimates are investigated and obtained, and the upped bound is calculated.
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
Thin films of CuPc of various thicknesses (150,300 and 450) nm have been deposited using pulsed laser deposition technique at room temperature. The study showed that the spectra of the optical absorption of the thin films of the CuPc are two bands of absorption one in the visible region at about 635 nm, referred to as Q-band, and the second in ultra-violet region where B-band is located at 330 nm. CuPc thin films were found to have direct band gap with values around (1.81 and 3.14 (eV respectively. The vibrational studies were carried out using Fourier transform infrared spectroscopy (FT-IR). Finally, From open and closed aperture Z-scan data non-linear absorption coefficient and non-linear refractive index have been calculated res
... Show MoreSupport Vector Machines (SVMs) are supervised learning models used to examine data sets in order to classify or predict dependent variables. SVM is typically used for classification by determining the best hyperplane between two classes. However, working with huge datasets can lead to a number of problems, including time-consuming and inefficient solutions. This research updates the SVM by employing a stochastic gradient descent method. The new approach, the extended stochastic gradient descent SVM (ESGD-SVM), was tested on two simulation datasets. The proposed method was compared with other classification approaches such as logistic regression, naive model, K Nearest Neighbors and Random Forest. The results show that the ESGD-SVM has a
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show More