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A B S T R A C T   

The photosynthetic activity of phytoplankton in the seas is responsible for an estimated 50–80 % of the world’s 
oxygen generation. Both phytoplankton and zooplankton require some of this synthesized oxygen for cellular 
respiration. This study aims to better understand how the oxygen-phytoplankton dynamics are altered due to the 
Allee effect in phytoplankton development, particularly when considering the time-dependent oxygen generation 
rate. The dynamic analysis of the model is dedicated to finding the possible equilibrium points. The analysis 
reveals that three equilibrium points can be obtained. The stability study demonstrates that one of the equi-
librium points is always stable. The remaining equilibrium points are stable under specific conditions. We also 
identify bifurcations originating from these equilibrium points, including transcritical, pitchfork, and Hopf 
bifurcation. We derive conditions for stable limit cycles (supercritical Hopf bifurcation) and, in some cases, 
establish the non-existence of solutions. Numerical simulations are performed to validate our theoretical find-
ings. Furthermore, it is noted that the Allee threshold for the phytoplankton population (k0) significantly in-
fluences the overall dynamics of the system. When k0 ≤ 0.001, the population of plankton is at risk of extinction. 
On the other hand, when 0.001 < k0 ≤ 0.01, the population of zooplankton is at risk of extinction. When 
0.01 < k0 ≤ 2, the solution reaches a stable condition of coexistence. Conversely, when k0 ≥ 2.1, the solution 
exhibits periodic attractor behaviour.   

1. Introduction 

Understanding dissolved oxygen dynamics has received much in-
terest because it is such a key indicator for the health of the marine 
ecosystem [1–3]. Phytoplankton, the planktonic communities most 
resembling plants, supply the vast majority of the oxygen in the oceans 
through photosynthesis and serve as the foundation of the marine food 
chain. It is commonly known that the amount of oxygen generated by 
phytoplankton varies significantly due to environmental fluctuations 
such as the rate of salinity, the level of temperature, and the number of 
nutrients. Further, phytoplankton’s oxygen production varies dramati-
cally throughout the day and night. Therefore, the link between 
phytoplankton and dissolved oxygen is essential to the survival of most 
species, from the simplest (a single cell) to the most sophisticated (a 
human being). Changes in oxygen production can have profound con-
sequences for marine life [4]. For instance, some environmental factors, 

including temperature, affect phytoplankton’s biomass and growth. 
Dissolved oxygen levels in water fluctuate on a daily cycle since oxygen 
is created during photosynthesis (during the day) and absorbed during 
respiration (at all times). Phytoplankton communities are, therefore, 
valuable indicators of environmental changes [5–8]. For example, 
Mondal, Samanta and De la Sen have investigated how the coupled 
plankton-oxygen dynamics in the ocean is affected by a low oxygen 
production rate which can lead to oxygen depletion and plankton 
extinction [9]. 

Most modelers generally select the Logistic growth form as the 
growth function for the prey species without considering the predator 
species [10–12]. However, it is common knowledge that the resources 
available in an ecosystem, such as space, food, and the components of 
essential nutrition, are finite. As the population grows, the average 
growth rate steadily decreases. The average growth rate drops to zero as 
the population meets the environment’s carrying capacity, k, and drops 
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further for any population size greater than k. Further, a substantial 
body of research suggests that a low population density actually has the 
opposite effect. The Allee effect is the name of this phenomenon, which 
describes the positive density dependency of population increase in 
areas with low densities [13]. 

On the other hand, the study of theoretical ecology has as its primary 
goal the identification of the various dynamical mechanisms linked with 
interactions between prey and predator [14–16]. An example of a 
particular type of predator-prey interaction that opens up various facets 
of marine ecology is the relationship between phytoplankton and 
zooplankton. Phytoplankton significantly contributes to aquatic eco-
systems, including producing an enormous amount of oxygen, managing 
natural resources and water quality, and providing the basis for various 
food webs [17,18]. Research on the dynamics of plankton is a fasci-
nating topic. The building blocks of all aquatic food chains can be found 
in plankton, with phytoplankton occupying the first trophic level of the 
food chain [19]. Phytoplankton toxins play a critical environmental 
function and can not be disregarded. Environmental stress factors, 
optimal environmental circumstances, nutrient-limited settings, and 
other similar characteristics are significant contributors to the release of 
toxins. Some phytoplankton species are notorious for producing and 
releasing toxic or allelochemicals into the environment, which can be 
detrimental to other plankton species [20]. For instance, Venturino, 
Chattopadhyay and their colleagues have demonstrated that 
toxin-producing phytoplankton works as a controlling agent for the 
cessation of plankton blooms [21]. Dhar and Baghel consider the effect 
of dissolved oxygen on the presence of an interacting planktonic popu-
lation. They conclude that the possibility of Hopf-bifurcation in the 
interior equilibrium could occur if the phytoplankton growth rate is 
chosen as the bifurcation parameter [22]. 

The objective of this research is to investigate the dynamics of the 
oxygen-plankton model as a result of the combined influence of the Allee 
effect on the growth of phytoplankton and the time-dependent oxygen 
production rate in particular. Considering these effects, we propose a 
DOPZ model of dissolved oxygen-phytoplankton- zooplankton interac-
tion with a strong Allee effect on phytoplankton growth. This paper’s 
findings provide additional context for [22] by.  

• Replacing the linear form in the growth rate of the phytoplankton 
population with growth in the form of the strong Allee effect. 

• In addition, our model includes both toxic and non-toxic phyto-
plankton, and we assume the zooplankton consumes both.  

• Further, we consider that some phytoplankton species have a low 
chance of being eaten by zooplankton by hiding in the various sed-
iments on the seafloor. These sediments provide the prey with a place 
to hide from their predators.  

• Finally, since the phytoplankton performs photosynthesis 
throughout the day, they release oxygen into the atmosphere. This 
phenomenon has been considered in our model. 

After presenting the construction of our model, then our goal is to 
observe the impact of the Allee threshold on the dynamics of a DOPZ 
model. In addition, the comprehension of the nonlinear dynamics of our 
model will be discussed by employing different methodologies such as 
stability and bifurcation analysis techniques. Finally, we will verify the 
accuracy of our analytical results by simulating the proposed system 
numerically. 

2. Construction of the model 

Our work involves a 3D model of an aquatic system with three 
components: phytoplankton u(t), zooplankton v(t), and concentration of 
dissolved oxygen w(t). The following presumptions form the basis of the 
mathematical model that will aid in our understanding of the dynamics 
of the DOPZ system. 

The phytoplankton population is assumed to come in two types, toxic 

and non-toxic which can occasionally release harmful substances [23]. 
Phytoplankton species are assumed to grow according to the strong 

Allee effect type of growth. The term ru
(a1+w0 − w)

(
1 − u

k
)( u

k0
− 1

)
stands for 

the Allee effect type growth of phytoplankton, combining the absorption 
of dissolved oxygen with the growth rate r, the maximal phytoplankton 
carrying capacity k and the critical phytoplankton level k0 (Allee 
threshold) such that 0 < k0 < k [11]. When the population density drops 
below the critical threshold k0, the population starts to decrease, and the 
population tends to extinction. w0 is the constant concentration of dis-
solved oxygen that comes from several sources in the water; a1 is the 
phytoplankton saturation constant; δ1 denotes the phytoplankton’s 
natural death rate; α1u(1 − m)v represents the predation of the available 
phytoplankton by zooplankton. In addition, we consider that some 
phytoplankton populations have a low chance of being eaten by 
zooplankton by hiding in the various sediments that may be found on the 
seafloor. These sediments provide the prey with a place to hide from 
their predators [24]. Hence, (1 − m) represents the proportion of un-
protected phytoplankton consumed by various zooplankton types. Thus 
the phytoplankton equation has the following form: 

du
dt = ru

(a1+w0 − w)

(
1 − u

k
)( u

k0
− 1

)
− α1u(1 − m)v − δ1u. 

It is assumed that zooplankton feeds on the two categories 
mentioned above according to a modified Holling type I and II response 
[22,25]. Thus, α2u(1− m)v

(a2+w0 − w)
denotes the conversion from phytoplankton to 

zooplankton; a2 is the zooplankton saturation constant; au(1 − m)v 
stands for the predation of toxic phytoplankton by zooplankton; δ2 
represents the zooplankton’s natural death rate. Therfore, the equation 
of zooplankton species can be written as 

dv
dt =

α2u(1− m)v
(a2+w0 − w)

− δ2v − au(1 − m)v. 
w(t) represents the oxygen concentration in an aquatic environment. 

Further, since the phytoplankton performs photosynthesis throughout 
the day, they release oxygen into the atmosphere. Additionally, the rate 
of oxygen depletion can be attributed to various factors, including the 
consumption of oxygen by phytoplankton during the night, the respi-
ration of marine animals, and the gradual decline in oxygen concen-
tration that results from chemical reactions that take place in the water 
[26]. Thus, s(w0 − w) represents the dissolved oxygen concentration 
that comes from other sources, du represents the amount of oxygen 
produced as a result of the process of photosynthesis carried out by 
phytoplankton. γ1uw is the consumption of oxygen by phytoplankton 
during the night. γ2vw denotes the consumption of oxygen by 
zooplankton. γ is the natural depletion rate of oxygen. In this case, the 
dissolved oxygen equation can be written as: 

dw
dt = s(w0 − w)+ du − γw − γ1uw − γ2vw. 
The following set of ordinary differential equations serves as the 

governing structure for the dynamical system of the DOPZ model: 

du
dt

=
ru

(a1 + w0 − w)

(
1 −

u
k

)( u
k0

− 1
)

− α1u(1 − m)v

− δ1u= f1(u, v,w),
dv
dt

=
α2u(1 − m)v
(a2 + w0 − w)

− δ2v

− au(1 − m)v= f2(u, v,w),
dw
dt

= s(w0 − w)+ du − γw − γ1uw

− γ2vw= f3(u, v,w) (1) 

with the initial conditions u(0) = u00 ≥ 0, v(0) = v00 ≥ 0. All pa-
rameters for the dissolved oxygen-phytoplankton-zooplankton model 
(DOPZ) are expected to be positive and clarified in Table 1. 

Further, Fig. 1 illustrates the schematic sketch of the DOPZ model. 
In addition, the equations of the DOPZ model are C1(R3

+), where 
R3
+ = {(u,v,w),u≥ 0,v≥ 0,w≥ 0}. Therefore, they can be represented as 

Lipschitzian [27]. Thus, the solution of the DOPZ model exists, and it is 
unique. 
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3. Dynamical evaluation results 

In this section, the well-posedness of the system and present con-
clusions about the presence of potential equilibrium points are dis-
cussed. In addition, the analysis of stability and bifurcation around the 
potential equilibrium points is examined. 

3.1. Positivity and boundedness 

Since we are working with a biological system, the solutions of the 
DOPZ are essential to be both positive and bounded. The boundedness of 
solutions indicates that none of the populations exhibit unlimited 
growth. The quality of being bound is a crucial aspect of the system’s 
proper functioning, as available resources limit it. 

Theorem 1. All solutions of the DOPZ model u(t), v(t) and w(t) with the 
initial conditions (u00, v00,w00)∈ R3

+ are positively invariant. 
Proof: By integrating the first and second functions of the DOPZ model for 

u(t) and v(t) with a positive initial condition (u00,v00,w00), we obtain 

u(t) = u00 exp
{∫ t

0

[
r

(a1+w0 − w(τ))
(
1 −

u(τ)
k
)(u(τ)

k0
− 1

)
− α1(1 − m)v(τ) −

δ1

]
dτ
}

. 

v(t) = v00 exp
{∫ t

0

[
α2(1− m)u(τ)
(a2+w0 − w(τ)) − δ2 − a(1 − m)u(τ)

]
dτ
}

. 

Then, 
dw = (sw0 + du − w(s + γ + γ1u + γ2v)dt.    

Fig. 1. Schematic diagram of the DOPZ model.  

dw =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sw0 + du00e

∫ t

0

[

r
(a1+w0 − w(τ))

(
1− u(τ)

k

)(
u(τ)
k0

− 1

)

− α1(1− m)v(τ)− δ1

]

dτ

− w

⎛

⎜
⎜
⎝

s + γ + cvγ1u00e

∫ t

0

[

r
(a1+w0 − w(τ))

(
1− u(τ)

k

)(
u(τ)
k0

− 1

)

− α1(1− m)v(τ)− δ1

]

dτ

− γ2v00e

∫ t

0

[
α2 (1− m)u(τ)
(a2+w0 − w(τ))

− δ2 − a(1− m)u(τ)

]

dτ

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

dt.

Table 1 
The biological interpretation of the DOPZ system’s parameters.  

Parameters Biological interpretation 

r The growth rate of phytoplankton. 
α1 The capture rate of the available non-toxic phytoplankton by 

zooplankton. 
m ∈ (0,1) The proportion of protected phytoplankton. 
α2 The conversion rate from phytoplankton to zooplankton. 
a The predation rate of toxic phytoplankton by zooplankton. 
δ1 The phytoplankton’s natural death rate. 
δ2 The zooplankton’s natural death rate. 
a1 The phytoplankton saturation constant. 
a2 The zooplankton saturation constant. 
w0 The constant concentration of dissolved oxygen that comes from other 

sources. 
s The replenishment rate of oxygen in the marine. 
d The amount of oxygen produced as a result of the process of 

photosynthesis carried out by phytoplankton. 
γ The natural depletion rate of oxygen. 
γ1 The consumption of oxygen by phytoplankton during the night. 
γ2 The consumption of oxygen by zooplankton.  
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Therefore, after eliminating the non-negative terms, this produces 

dw≥

⎡

⎢
⎣ −

w

⎛

⎜
⎝

s+γ+γ1u00e
∫ t

0

[
r

(a1+w0 − w(τ))(1− u(τ)
k )

(
u(τ)
k0

− 1
)
− α1(1− m)v(τ)− δ1

]
dτ

+γ2v00e
∫ t

0

[
α2 (1− m)u(τ)
(a2+w0 − w(τ))− δ2 − a(1− m)u(τ)

]
dτ

⎞

⎟
⎠

⎤

⎥
⎦dt.Conse-

quently, by integrating the equation shown above for w(t), these yields 

w(t) ≥ w00 exp
{
∫ t

0

[

−

(

s + γ +

γ1u00e
∫ t

0

[
r

(a1+w0 − w(τ)) (1− u(τ)
k )

(
u(τ)
k0

− 1
)
− α1(1− m)v(τ)− δ1

]
dτ

+

γ2v00e
∫ t

0

[
α2 (1− m)u(τ)

(a2+w0 − w(τ))− δ2 − a(1− m)u(τ)
]

dτ
)]

dt
}

. 

As a result of the exponential function’s definition, any solution, any 
solution (u(t), v(t),w(t)) that starts inside of R3

+ with positive initial condi-
tions (u00, v00,w00) will remain in R3

+. □ 

Theorem 2. Assume that α1 ≥ α2 + a, then all solutions u(t), v(t) and w(t)

of the DOPZ model that initiates in ζ =
{
(u, v, w)∈ R3

+, u + v≤ kr(k+k0)
δk0

,

w≤ sw0+kd
s+γ

}
, where δ = min{δ1 + r, δ2,}, are uniformly bounded. 

Proof: From the last equation of the DOPZ model, we obtain. 
dw
dt ≤ sw0 + kd − (s + γ)w, .where k is the maximal phytoplankton 

carrying capacity. Now, by applying the separation of variables method, the 
following is obtained: 

0 ≤ w(t) ≤ sw0+kd
s+γ (1 − e− (s+γ)t)+ w(0)e− (s+γ)t. 

Hence, 
0 ≤ lim

t→∞
sup w(t) ≤ sw0+kd

s+γ = g.. 

Let L=u + v, then 
dL
dt = du

dt +
dv
dt. 

Using the above dissolved oxygen bound and the fact that α1 ≥ α2 + a, 
the following is obtained 

dL
dt ≤

ru
(a1+w0 − g)

(
1 − u

k
)( u

k0
− 1

)
− α1u(1 − m)v − δ1u+

α2u(1− m)v
(a2+w0 − g)

− δ2v −

auv(1 − m). 
i.e., 
dL
dt ≤

ru
(a1+w0 − g)

(
1 − u

k
)( u

k0
− 1

)
− δ1u − δ2v. 

By using the maximal phytoplankton carrying capacity k the following is 
obtained: 

dL
dt ≤

kr(k+k0)
k0

− (δ1 + r)u − δ2v. 
dL
dt + δL ≤

kr(k+k0)
k0

, where δ = min.{δ1 + r,δ2}. Then applying Gronwall’s 
inequality [28], the following is obtained: 

0 ≤ L(u(t),v(t)) ≤ kr(k+k0)
δk0

(1 − e− δt)+ L(0)e− δt, 
hence, 
0 ≤ lim

t→∞
sup L(t) ≤ kr(k+k0)

δk0
. 

So, u(t), v(t) and w(t) will remain bounded. □ 

Remark 1. Since α1 indicates phytoplankton depletion owing to 
zooplankton intake and α2 and a represent growth and the predation rate of 
toxic phytoplankton due to plankton interaction respectively, it is logical to 
conclude that 

α1 ≥ α2 + a. 
Since we are dealing with a nonlinear system it is not easy to solve the 

proposed system directly. So the better way to understand the behavior of a 
non-linear system is to study the stability and the possible accruing of a 
bifurcation near the possible equilibrium points [29]. 

3.2. Existence of equilibria 

The DOPZ model has the following steady states.  

1. The dissolved oxygen equilibrium point (DOEP) is given by F1 =

(0, 0, ŵ), where ŵ = sw0
s+γ.  

2. The zooplankton free equilibrium point (ZFEP) given by F2 = (u,0,
w), where w = sw0+du

s+γ+γ1u > 0 and u is the root of the following equation: 

g(u) = A1u3 + A2u2 + A3u+ A4, 
where A1 = γ1r; A2 = r(s + γ) − γ1r(k + k0); 
A3 = − r(k + k0)(s + γ) − δ1kk0d+ kk0γ1(sa1 + sw0 + r); 
A4 = kk0[(r + δ1a1)(s + γ) + δ1w0γ]. 
Clearly, g(0) = kk0[(r + δ1a1)(s + γ) + δ1w0γ] > 0, and 
g(k) = r2(r(γ + s) − rγ1(k + k0))–r(r(k + k0)(γ + s) − kk0γ1(r + sa1 +

sw0) + dkk0δ1)+ r4γ1 + kk0((γ + s)(r + a1δ1) + γδ1w0). 
Therefore, by the intermediate value theorem [30], g(u) has a posi-

tive root say u = u in the interval (0, k) if g(k) < 0.  

3. The coexisting equilibrium point (CEP) given by F3 = (u∗, v∗, w∗), 
where u∗ =

δ2(a2+w0 − w∗)

(1− m)[α2 − a(a2+w0 − w∗)]
, v∗ =

r(k+k0)u∗− ru∗2 − rkk0 − δ1kk0(a1+w0 − w∗)

α1(1− m)(a1+w0 − w∗)kk0
, 

and w∗ is the root of the following equation: 

B0w5 +B1w4 + B2w3 + B3w2 + B4w + B5 = 0 (2)  

where, Bi, i = 1,2, 3,4, 5 are listed in the Appendix section. Using Des-
cartes’s rule of sign [31], Equation (2) has a unique positive root, if one 
of the following sets conditions hold: 

B0 > 0 and B2,3,4,5 < 0,B0,1 > 0 and B3,4,5 < 0,B0,1,2 > 0 and B4,5

< 0,B0,1,2,3 > 0 and B5 < 0,B0 < 0 and B2,3,4,5 > 0,B0,1 < 0 and B,3,4,5

> 0,B0,1,2 < 0 and B4,5 > 0,B0,1,2,3 < 0 and B5 > 0
(3) 

For u∗ and v∗ to be positive, the following two conditions must be 
satisfied: 

α2 > a(a2 +w0 − w∗), r(k+ k0)u∗ > ru∗2
+ rkk0 + δ1kk0(a1 +w0 − w∗)

(4)  

3.3. Local stability 

The feature of the eigenvalues of the Jacobian matrix J(u, v,w) at an 
equilibrium point is directly related to the behaviour of the DOPZ model 
near an equilibrium [32]. The J(u, v,w) of the DOPZ model at any point, 
say (u, v,w), can be written as: 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1
∂u

∂f1
∂v

∂f1
∂w

∂f2
∂u

∂f2
∂v

∂f2
∂w

∂f3
∂u

∂f3
∂v

∂f3
∂w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= (aij)3×3, .where, a11 =
2ru(k+k0)− 3ru2 − rkk0

(a1+w0 − w)kk0
−

α1v(1 − m) − δ1 a12 = − α1u(1 − m); a13 =
ru2(k+k0)− ru3 − rkk0u

(a1+w0 − w)
2k2k2

0
; a21 =

α2v(1− m)

(a2+w0 − w)
− av(1 − m); a22 =

α2u(1− m)

(a2+w0 − w)
− δ2 − au(1 − m); a23 =

α2u(1− m)v
(a2+w0 − w)

2; 

a31 = d − γ1w; a32 = − γ2w; a33 = − (s + γ + γ1u + γ2v). 
Keeping this in mind, we take a look at the DOPZ system around each 

equilibrium.  

1. The Jacobian matrix at the DOEP F1 = (0, 0, ŵ) is given as: 

J(F1)=

⎡

⎢
⎢
⎢
⎣

− r
(a1 + w0 − ŵ)

− δ1 0 0

0 − δ2 0

d − γ1 ŵ − γ2 ŵ − s − γ

⎤

⎥
⎥
⎥
⎦

(5) 

Then, J(F1) has the eigenvalues λ11 = − r
(a1+w0 − ŵ)

− δ1 < 0, λ12 = − δ2 <

0, and λ13 = − s − γ < 0, which means F1 is a locally asymptotically 
stable point. 
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2. The Jacobian matrix at the ZFEP F2 = (u,0,w) is given as: 

J(F2)=

⎡

⎢
⎢
⎣

a[2]
11 a[2]

12 a[2]
13

a[2]
21 a[2]

22 a[2]
23

a[2]
31 a[2]

32 a[2]
33

⎤

⎥
⎥
⎦, (6)  

where a[2]
11 =

2ru(k+k0)− 3ru2 − rkk0
(a1+w0 − w)kk0

; a[2]
12 = − α1u(1 − m), a[2]

13 =

ru2(k+k0)− ru3 − rkk0u
(a1+w0 − w)

2k2k2
0

, a[2]
21 = 0; a[2]

22 =
α2u(1− m)

(a2+w0 − w)
− δ2 − au(1 − m); a[2]

23 = 0;

a[2]
31 = d − γ1w; a[2]

32 = − γ2w; a[2]
33 = − s − γ − γ1u. 

Then, the characteristic equation of J(F2) is given by: 
(

α2u(1− m)

(a2+w0 − w)
− δ2 − au(1 − m) − λ

)
[λ2 − Tr(J(F2))λ + Det(J(F2))]. 

The eigenvalues of the above equation can be written as follows. 
λ21 =

α2u(1− m)

(a2+w0 − w)
− δ2 − au(1 − m), 

Tr(J(F2)) =
[2ru(k+k0)− 3ru2 − rkk0 ]− (s+γ+γ1u)(a1+w0 − w)kk0

(a1+w0 − w)kk0
, 

Det(J(F2)) =
[2ru(k+k0)− 3ru2 − rkk0 ][− s− γ− γ1u]

(a1+w0 − w)kk0
−

[
ru2(k+k0)− 3u3 − rkk0u

(a1+w0 − w)
2k2k2

0

]
[d − γ1w]. 

Clearly, F2 exhibits local asymptotic stability if and only if the 
following conditions are fulfilled: 

δ2 + au(1 − m) >
α2u(1 − m)

(a2 + w0 − w)
,

2ru(k + k0) < 3ru3 + rkk0 + (s + γ + γ1u)(a1 + w0 − w)kk0,

Det(J(F2)) > 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)    

3. The Jacobian matrix at the CEP F3 = (u∗, v∗,w∗) is given as: 

J(F3)=

⎡

⎢
⎢
⎣

a[3]
11 a[3]

12 a[3]
13

a[3]
21 a[3]

22 a[3]
23

a[3]
31 a[3]

32 a[3]
33

⎤

⎥
⎥
⎦ (8)  

where, a[3]
11 =

2ru∗(k+k0)− 3ru∗2 − rkk0
(a1+w0 − w∗)kk0

− δ1 − α1v∗(1 − m); a[3]
12 = − α1u∗(1 −

m); a[3]
13 =

ru∗2(k+k0)− ru∗3 − rkk0u∗

(a1+w0 − w∗)
2k2k2

0
; a[3]

21 =
α2v∗(1− m)

(a2+w0 − w∗)
− av∗(1 − m); a[3]

22 = 0, 

a[3]
23 =

α2u∗(1− m)v∗

(a2+w0 − w∗)
2,; a[3]

31 = d− γ1w∗; a[3]
32 = − γ2w∗; a[3]

33 = − s − γ − γ1u∗ −

γ2v∗. 
Therefore, the characteristic equation of J(F3) is represented as: 

λ3 +A1λ2 + A2λ + A3 = 0, (9)  

where, 
A1 = − (a[3]

11 + a[3]
33), 

A2 = − (a[3]
13a[3]

31 + a[3]
23a[3]

32 + a[3]
12a[3]

21 − a[3]
11a[3]

33), 
A3 = a[3]

11a[3]
23a[3]

32 + a[3]
12a[3]

21a[3]
33 − a[3]

13a[3]
21a[3]

32 − a[3]
12a[3]

23a[3]
31, 

Δ = A1A2 − A3 = (a[3]
11 + a[3]

33)(a
[3]
13a[3]

31 − a[3]
11a[3]

33)+ a[3]
11a[3]

12a[3]
21 +

a[3]
23a[3]

32a[3]
33 + a[3]

12a[3]
23a[3]

31 + a[3]
13a[3]

21a[3]
32. 

Now, from the Routh-Hurwitz criteria [32], F3 is a LAS point, under 
the condition that A1 > 0,A3 > 0 and Δ > 0. 

In the following theorem, adequate conditions for the global stability 
of the CEP, which is given by F3 = (u∗, v∗,w∗) are identified by the 
Lyapunov method [33]. 

Theorem 3. Assume that 

[d+w∗]
2
≤

4c1r
kk0

[(u+u∗) − (k+k0)][s+ γ+γ1u+ γ2v]

w∗(v − v∗)(w − w∗)<

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1r
kk0

[(u+u∗) − (k+k0)]

√

+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s+ γ+ γ1u+ γ2v

√
]2

α2 > a

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(10) 

then CEP is globally asymptotically stable in R3
+. 

Proof: Define G3 = c1
(
u − u∗ − u∗ ln u

u∗

)
+ c2

(
v − v∗ − v∗ ln v

v∗
)
+

c3
( w− w∗

2
)2, where c1, c2 and c3 are positive constants to be specified and 

G3(u, v,w) is a positive definite function of CEP. Thus, 
dG3
dt ≤ c1(u − u∗)

[
− ru2

kk0
+

r(k+k0)u
kk0

− r + ru∗2

kk0
−

r(k+k0)u∗

kk0
+ r − α1(1 −

m)(v − v∗
]
+ c2(v − v∗)[(α2 − a)(1 − m)(u − u∗)]+ c3(w − w∗) [ − (s +

γ)(w − w∗) + d(u − u∗) − γ1u(w − w∗) + w∗(u − u∗) − γ2v(w − w∗) +

w∗(v − v∗)]. 
Therefore, 
dG3
dt ≤ −

c1r(u− u∗)
2

kk0
[(u + u∗) − (k + k0)] − (1 − m)(u − u∗)(v −

v∗)[c1α1 − c2α2 + c2a] − c3(w − w∗)
2
[(s + γ) + γ1u + γ2v] + c3(u −

u∗)(w − w∗)[d + w∗] + c3w∗(v − v∗)(w − w∗). 
By choosing the constants as: c2 = c3 = 1 and c1 =

(α2 − a)
α1

, the following 
is obtained, 

dG3
dt ≤ − c1r

kk0
[(u + u∗) − (k + k0)](u − u∗)

2
+ [d + w∗](u − u∗)(w −

w∗) − [(s + γ) + γ1u + γ2v](w − w∗)
2
+ w∗(v − v∗)(w − w∗). 

After some algebraic computation, we obtain 
dG3
dt ≤ −

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1r
kk0

[(u + u∗) − (k + k0)]
√

(u + u∗) +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅s + γ + γ1u + γ2v√

(w − w∗)
]2

+

w∗(v − v∗)(w − w∗). 
Then, dG3

dt < 0 under condition (10). Hence, G3 is a Lyapunov function. 
Therefore, CEP is globally asymptotically stable in R3

+ if u, v and w are 
controlled as in condition (10). 

3.4. Local bifurcation 

Bifurcation theory looks at how the structure of a group of curves, 
like the solutions to a set of differential equations, can change over time. 
A bifurcation happens when a small, smooth change in the values of a 
system’s parameters causes a big change in the way it acts. It is most 
often used in mathematics to study systems that change over time. Local 
bifurcations happen when parameters cross critical thresholds and cause 
changes in the local stability of equilibria. In this section, it is checked to 
see if there is a chance of local bifurcation. See Refs. [27,34] for a 
comprehensive treatment. To this end, we rewrite the DOPZ model as 
follows: 

dU
dt = F(U), with U =

⎛

⎝
u
v
w

⎞

⎠, and F =

⎛

⎝
f1(u, v,w)

f2(u, v,w)

f3(u, v,w)

⎞

⎠. 

For a nonzero vector Z = (z1, z2, z3)
T we set 

D2F(z, z)=

⎡

⎣
c11
c21
c31

⎤

⎦, (11)  

where, 

c11 =
[2r(k+k0)− 6ru]z2

1
(a1+w0 − w)kk0

− 2α1(1 − m)z1z2 +
[

2ru(k+k0)− 3ru2 − rkk0

(a1+w0 − w)
2

][
z1z3 +

z1z3
k2k2

0

]
+

[
2ru2(k+k0)− 2ru3 − 2rkk0u

(a1+w0 − w)
3k2k2

0

]
, 

c21 =
2α2(1− m)

(a2+w0 − w)

[
z1z2 −

uvz2
3

(a2+w0 − w)
2

]
− 2a(1 − m)z1z2, 

c31 = − 2γ1z1z3 − 2γ2z2z3. 

Theorem 4. For α∗
2 =

[δ2+au(1− m)](a2+w0 − w)

u(1− m)
, the DOPZ model, at F2 has  

1) no saddle-node bifurcation.  
2) a transcritical bifurcation if 
(
P[2])T[D2F

(
F2, α∗

2
)(

Z[2],Z[2])] ∕= 0 (12)   
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3) a pitchfork bifurcation if condition (12) is violated and the following 
statement is satisfied 

(
P[2])T[D3F

(
F2,α∗

2
)(

Z[2], Z[2], Z[2])] ∕= 0, (13)  

where the notation in (12) and (13) will be introduced during the proof. 
Proof: - At α∗

2 =
[δ2+au(1− m)](a2+w0 − w)

u(1− m)
, J(F2) has a zero eigenvalue λ21 =

0. Therefore, J(F2) at α∗
2 becomes 

J∗(F2) =
⎡

⎢
⎢
⎢
⎣

2ru(k + k0) − 3ru2 − rkk0

(a1 + w0 − w)kk0
− δ1 − α1k

ru2(k + k0) − ru3 − rkk0u
T2

2k2k2
0

0 0 0

d − γ1w − γ2w − s − γ − γ1u

⎤

⎥
⎥
⎥
⎦

. 

Now, let Z[2] = (z[2]1 , z[2]2 , z[2]3 )
T 

be an eigenvector corresponding to λ21 =

0. Thus (J∗(F2) − λ21I)Z[2] = 0, which gives: 

z[2]1 =
[α1u(1− m)e1e2

3+e2γ2w]z[2]2
[(e4 − γ1e3)e1e3+e2(d− γ1w)]kk0

, z
[2]

3
=

(d− γ1w)z[2]1 − γ2wz[2]2
s+γ+γ1u and z[2]2 represents 

any nonzero real number, where (e4 − γ1e3)e1e3 + e2(d − γ1w) ∕= 0 and 
e1 = s+ γ+ γ1u; e2 = ru2(k + k0) − ru3 − rkk0u; e3 = (a1 + w0 −

w)kk0; e4 = 2ru(k + k0) − 3ru2 − rkk0. That means 

Z[2] =
(

[α1u(1− m)e1e2
3+e2γ2w]z[2]2

[(e4 − γ1e3)e1e3+e2(d− γ1w)]kk0
, z[2]2 ,

(d− γ1w)z[2]1 − γ2wz[2]2
s+γ+γ1u

)T
. 

Let P[2] = (p[2]1 , p[2]2 , p[2]3 )
T 

be an eigenvector associated with λ21 = 0 of the 
matrix J∗T

2 . Then (J∗T
2 − λ21I)P[2] = 0. By solving this equation for P[2], P[2] =

(
p[2]1 , p[2]2 ,

ru2(k+k0)− ru3 − rkk0u
(a1+w0 − w)

2k2k2
0(s+γ+γ1u)

)T 
is obtained, where p[2]

1 and p[2]
2 is any 

nonzero real number. 
Then, the following is taken into account to check if saddle-node bifur-

cation meets the criteria of Sotomayor’s theorem [35]: 
∂F

∂α2
= Fα2 (F2,α2) =

(
∂f1
∂α2

, ∂f2
∂α2

, ∂f3
∂α2

)T
=

(
0, uv(1− m)

(a2+w0 − w)
,0
)T

. 

So, Fα2 (F2,α∗
2) = (0,0, 0)T. 

Therefore, the first criterion for transcritical bifurcation or pitchfork 
bifurcation holds, whilst saddle-node bifurcation cannot arise. Subsequently, 

DFα2 (F2,α∗
2) =

⎡

⎢
⎢
⎢
⎣

0 0 0

0
u(1 − m)

(a2 + w0 − w)
0

0 0 0

⎤

⎥
⎥
⎥
⎦

. 

where, DFα2 (S, α2) represents the derivative of Fα2 (S,α2) with respect to 
S = (u, v,w)

T. Furthermore, 

DFα2 (F2,α∗
2)Z

[2] =

⎡

⎢
⎢
⎢
⎣

0 0 0

0
u(1 − m)

(a2 + w0 − w)
0

0 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

z[2]1

z[2]2

z[2]3

⎤

⎥
⎥
⎦. 

(P[2])
TDFα2 (F2, α∗

2)Z
[2] = (p[2]

1 , p[2]
2 , p[2]

3 )
(

0, u(1− m)z[2]2
(a2+w0 − w)

, 0
)T

=

u(1− m)z[2]2 p[2]
2

(a2+w0 − w)
∕= 0. 

Therefore, the second condition for transcritical or pitchfork bifurcation 
holds. 

Next, we assume that condition (12) holds, i.e. 
(P[2])

T
[D2F(F2,α∗

2)(Z
[2],Z[2])] ∕= 0. 

This implies that the necessary conditions for a transcritical bifurcation 
are met. 

Finally, if condition (12) is not satisfied, then the first, second and third 
conditions of pitchfork bifurcation are satisfied according to Sotomayor’s 
theorem. Further, we have 

D3F(z,z,z) =

⎡

⎣
x11
x21
x31

⎤

⎦, 

where, 

x11 = −
6rz3

1
(a1+w0 − w)kk0

+
[

2r(k+k0)− 6ru
(a1+w0 − w)

2

][
2z2

1z3 +
z2

1z3

k2k2
0

]
+

[
4ru(k+k0)− 6ru2 − 2rkk0

(a1+w0 − w)
3

][
z1z2

3 +
2z1z2

3
k2k2

0

]
+

6ru[u(k+k0)− u2 − kk0 ]z2
3

(a1+w0 − w)
4k2k2

0
; 

x21 =
2α2(1− m)z3

(a2+w0 − w)
2

[
z1z2 −

vz1z3
(a2+w0 − w)

− uz2z3
(a2+w0 − w)

−
3uvz2

3
(a2+w0 − w)

2

]
; x31 = 0. 

Hence, 

(P[2])
T
[D3F(F2, α∗

2)(Z
[2], Z[2], Z[2])] = (p[2]

1 , p[2]
2 , p[2]

3 )

(

−
6r[z[2]1 ]

3

(a1+w0 − w)kk0 
+

[
2r(k+k0)− 6ru
(a1+w0 − w)

2

][

2[z[2]1 ]
2
z[2]3 +

[z[2]1 ]
2
z[2]3

k2k2
0

]

+
[

4ru(k+k0)− 6ru2 − 2rkk0

(a1+w0 − w)
3

][

z[2]1 [z[2]3 ]
2
+

2z[2]1 [z[2]3 ]
2

k2k2
0

]

+
6ru[u(k+k0)− u2 − kk0 ][z[2]3 ]

2

(a1+w0 − w)
4k2k2

0
,

2δ2+2au(1− m)

(a2+w0 − w)

[

z[2]1 z[2]2 z[2]3 −
z[2]2 [z[2]3 ]

2

k2k2
0

]

, 0
)T

. 

= −
6r[z[2]1 ]

3
p[2]

1
(a1+w0 − w)kk0

+
[

2r(k+k0)− 6ru
(a1+w0 − w)

2

][

2[z[2]1 ]
2
z[2]3 +

[z[2]1 ]
2
z[2]3

k2k2
0

]

p[2]
1 +

[
4ru(k+k0)− 6ru2 − 2rkk0

(a1+w0 − w)
3

][

z[2]1 [z[2]3 ]
2
+

2z[2]1 [z[2]3 ]
2

k2k2
0

]

p[2]
1 +

6ru[u(k+k0)− u2 − kk0 ][z[2]3 ]
2

(a1+w0 − w)
4k2k2

0
p[2]

1 +

2δ2+2au(1− m)

(a2+w0 − w)

[

z[2]1 z[2]2 z[2]3 −
z[2]2 [z[2]3 ]

2

k2k2
0

]

p[2]
2 . 

This means if condition (13) is satisfied, then the DOPZ model has a 
pitchfork bifurcation at F2 with the parameter α∗

2. 

Theorem 5. For γ∗2 =
a[3]11(a

[3]
13a[3]31+a[3]

12a[3]21+a[3]
11a[3]33 − [a[3]

33 ]
2
)+a[3]13 [a

[3]
31a[3]33+a[3]

21a[3]32 ]

[a[3]
32a[3]

33+a[3]
12a[3]

31 ]w∗
, where 

the formulas of a[3]
ij = dij are given in the following proof, the DOPZ model at 

CEP has a saddle-node bifurcation if 

D2F
(
F3, γ∗1

)(
Z[3],Z[3]) ∕= 0 (14) 

Proof: - According to J(F3), given by (8), the DOPZ model at CEP has a 
zero eigenvalue, say λ31 = 0, at γ∗2 =

a[3]11(a
[3]
13a[3]31+a[3]12a[3]21+a[3]11a[3]33 − [a[3]33 ]

2
)+a[3]13 [a

[3]
31a[3]33+a[3]21a[3]32 ]

[a[3]32a[3]33+a[3]12a[3]31 ]w
∗

, where (a[3]
32a[3]

33 +a[3]
12a[3]

31) ∕= 0 and 

the Jacobian matrix J∗(F3) = J(F3, γ∗2), becomes: 

J∗(F3) =

⎡

⎣
d11 d12 d13
d21 d22 d23
d31 d32 d33

⎤

⎦. 

d11 =
2ru∗(k+k0)− 3ru∗2 − rkk0

(a1+w0 − w∗)kk0
− α1v(1 − m) − δ1; 

d12 = − α1u∗(1 − m); d13 =
ru∗2(k+k0)− ru∗3 − rkk0u∗

(a1+w0 − w∗)
2k2k2

0
; d21 =

α2v∗(1− m)

(a2+w0 − w∗)
−

av∗(1 − m); d22 = 0; d23 =
α2u∗(1− m)v∗

(a2+w0 − w∗)
2; d31 = d − γ1w∗; d32 = − γ∗2w∗;

d33 = − s − γ − γ1u∗ − γ∗2v∗.Now, let Z[3] = (z[3]1 , z[3]2 , z[3]3 )
T 

be an eigen-
vector corresponding to λ31 = 0. Thus (J∗(F3) − λ31F)Z[3] = 0, which im-

plies: z[3]1 =
− d23z[3]3

d21
, z[3]2 =

(d31d23 − d21d33)z[3]3
d21d23

, where d21 ∕= 0 and z[3]3 represents 

any nonzero real number. That means Z[3] = (z[3]1 , z[3]2 , z[3]3 )
T
. 

Let P[3] = (p[3]1 , p[3]2 , p[3]3 )
T 

be an eigenvector associated with λ31 = 0 of the 
matrix J∗(F3). Then (J∗T

3 − λ31I)P[3] = 0. By solving this equation for P[3], 

P[3] =
(
− d32P[3]

3
d12

,
[

d13d32
d12d23

− d33
d23

]
P[3]

3 ,P[3]
3

)T 
is obtained, where P[3]

3 is any nonzero 

real number. 
Now, the following are quantified to ensure that Sotomayor’s theorem for 

saddle-node bifurcation holds: 
∂F
∂γ2

=
(

∂f1
∂γ2

, ∂f2
∂γ2

, ∂f3
∂γ2

)T
= (0,0, − vw)

T. 

So, Fγ2 = (F3, γ∗2) = (0, 0, − v∗w∗)
T and hence (P[3])

TFγ2 (F3, γ∗2) =

− v∗w∗p[3]3 ∕= 0. 
Hence, the first requirement for saddle-node bifurcation is satisfied, but 

transcritical or pitchfork bifurcation is not possible. Subsequently, 

D2F(F3, γ∗1)(Z
[3], Z[3]) =

(
2r(k+k0)− 6ru∗[z[3]1 ]

2

(a1+w0 − w∗)kk0
− 2α1(1 − m)z[3]1 z[3]2 +

[
2ru∗(k+k0)− 3ru∗2

− rkk0

(a1+w0 − w∗)
2

][
z[3]1 z[3]3 +

z[3]1 z[3]3
k2k2

0

]
+ 2ru∗[u∗(k + k0) − u∗2

− kk0]

[z[3]3 ]
2

(a1+w0 − w∗)
3k2k2

0 ,
2α2 (1− m)

(a2+w0 − w∗)

[
z[3]1 z[3]2 −

u∗v∗ [z[3]3 ]
2

(a1+w0 − w∗)2

]
− 2a(1− m)z[3]1 z[3]2 ,− 2γ1z[3]1 z[3]3 − 2γ∗2z[3]2 z[3]3

)T. 

Hence, condition (14) guarantees that the second condition of saddle- 
node bifurcation is satisfied. Therefore, the DOPZ model has saddle-node 
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bifurcation at CEP with the parameter γ∗2. 
From Theorem 6, the Bendixson–Dulac criterion [13] is used to find the 

conditions that guarantee the DOPZ model has no periodic behaviour (Hopf 
bifurcation) in the positive quadrant of the uw-plane. 

Theorem 6. The DOPZ System has no periodic solution in R2
+(u,w)

, if one of 
the following conditions is true for all (u,w) in R2

+(u,w)
:   

Proof: For any initial value (u,w) in R2
+(u,w)

, let E(u,w) = 1
uw, e1(u,w) =

u
[

r
(a1+w0 − w)

(
1 − u

k
)( u

k0
− 1

)
− δ1

]
and e2(u,w) = s(w0 − w)+ du − γw −

γ1uw. 
Clearly, E(u,w) > 0 for all (u,w) ∈ R2

+ and it is a C1 function in 
R2
+(u,w)

= {(u,w),u> 0,w> 0, }. 

Thus Δ(u,w) = ∂
∂u (Ee1) +

∂
∂w (Ee2) =

− 2ru+r(k+k0)
(a1+w0 − w)kk0w − sw0

uw2 −
d

w2 < 0. Δ 
(u, v) does not change sign if one of the inequalities given on (15) satisfies and 
it is not identically zero in R2

+(u,w)
. Therefore, the DOPZ model has no periodic 

dynamics in R2
+(u,w)

. 
From Theorem 7, the steady state of ZFEP changes as the parameter γ 

crosses the threshold value γ∗, which implies that ZFEP may become unstable 
due to Hopf bifurcation when forced to operate within particular restrictions 
on its parameters. In the case where we use γ as the bifurcation parameter, the 
Hopf bifurcation threshold is the positive root of Tr J(F2)|γ=γ∗ = 0, under the 
condition Det J(F2)|γ=γ∗ > 0. 

This leads us to the following theorem as a result. 

Theorem 7. Assume that the third inequality of condition (7) holds along 
with the following condition: 

γ∗ > 0, (16)  

where γ∗ is defined in the proof of the theorem. Then, the DOPZ model pre-
sents a Hopf bifurcation at γ = γ∗ around the ZFEP. 

Proof: - The characteristic equation of matrix J(F2) is 

λ2-Tr(J(F2))λ+Det J(F2)=0 (17) 

and the prerequisites for the occurrence of the Hopf bifurcation are 
outlined below.  

a) [Tr J(F2)]|γ=γ∗ = 0,  
b) [Det J(F2)]|γ=γ∗ > 0,  
c) d

dγ[Re(λ1,2)] γ=γ∗ ∕= 0 (Transversality condition). 

Conditions (a) and (b) have been satisfied at γ∗ =
2ru(k+k0)− 3ru2+rkk0

(a1+w0 − w)kk0
−

(s + γ1u). Clearly γ∗ > 0 if Condition 16 holds. At γ = γ∗, the characteristic 
equation given by (17) is rewritten as λ2 + Det J(F2) = 0, which has two 
roots 

λ1,2 = ± i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
detJ(F2)

√
(18) 

Clearly, at γ = γ∗ there are two purely imaginary eigenvalues λ1 and λ2 

which are complex conjugates under conditions (7). 
Further, we write the general roots of equation (3) in the neighbourhood 

of γ∗ as 

λ1,2 =
tr(J(F2))±i

̅̅̅̅̅̅̅̅̅̅̅̅̅
detJ(F2)

√

2 , then 

d
dγ

[
Re

(
λ1,2

)]

γ=γ∗ =
d
dγ

[
tr(J(F2))

2

]

γ=γ∗
=

-1
2

∕= 0 (19) 

That means the third condition (c) has been verified, ensuring that when 
γ = γ∗, a Hopf bifurcation takes place at ZFEP. 

In theorem 8, the existence of a Hopf bifurcation around CEP is 
discussed. 

Theorem 8. Under the following assumptions 

Ai > 0, i = 1,2

a[3]
12a[3]

23 − a[3]
13A

ʹ
1

(
γ∗1
)
∕= 0

γ∗1 > 0.

(20) 

Here, Ai’s represent the coefficients of the characteristic equation that was 
mentioned in equation (9) with γ1 = γ∗

1 and the formula for γ∗
1 is given in the 

below proof. Then, there exists a Hopf bifurcation for CEP at γ1 = γ∗
1. 

Proof: - The value of the bifurcation parameter can be found if we set 
A1(γ∗1)A2(γ∗1) − A3(γ∗1) = 0 in equation (9). This gives: 

γ∗1 =
(d11d13+d13d33+d12d23)d+d11(d12d21 − d11d33 − d2

33)+d32(d23d33+d13d21)

(d11d13+d13d33+d12d23)w∗ . 
Clearly, γ∗1 > 0 if condition (20) holds. Now, at γ1 = γ∗1 Equation (9) 

can be written as 
(λ + A1)(λ2 + A2) = 0. 
According to condition (18), the above equation has three roots, a 

negative root λ1 = − A1 and two purely imaginary roots λ2,3 = ±i
̅̅̅̅̅̅
A2

√
. In a 

neighbourhood of γ∗1, the roots have the following forms: λ1 = − A1,λ2,3 =

ρ1(γ1) ± iρ2(γ1). 
Clearly, Re( λ2,3)|γ1=γ∗1

= ρ1(γ∗1) = 0 indicates that the first condition for 
Hopf bifurcation has been met at γ1 = γ∗1. Now to confirm the transversality 
condition, we substitute ρ1(γ1) ± iρ2(γ1) into equation (9) and then compute 
its derivative with respect to γ∗1, Θ(γ∗1)ψ(γ∗1)+ Γ(γ∗1)φ(γ∗1) ∕= 0, where the 
form of Θ(γ∗1),ψ(γ∗1),Γ(γ∗1) and φ(γ∗1) are 

ψ(γ1) = 3ρ2
1(γ1)+ 2A1(γ1)ρ1(γ1)+ A2(γ1) − 3ρ2

2(γ1), 
φ(γ1) = 6ρ1(γ1)ρ2(γ1)+ 2A1(γ1)ρ2(γ1), 
Θ(γ1) = ρ2

1(γ1)Aʹ
1(γ1)+ Aʹ

2(γ1)ρ1(γ1)+ (γ1) − Aʹ
1(γ1). 

Γ(γ1) = 2ρ1(γ1)ρ2(γ1)Aʹ
1(γ1)+ Aʹ

2(γ1)ρ2(γ1). 
Now at γ1 = γ∗1, substitution ρ1 = 0 and ρ2 =

̅̅̅̅̅̅
A2

√
, into equation (9), 

the following is obtained: 
ψ(γ∗1) = − 2A2(γ∗1),

φ(γ∗1) = 2A1(γ∗1)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2(γ∗1)
√

,

Θ(γ∗1) = Aʹ
3(γ

∗
1) − Aʹ

1(γ
∗
1)A2(γ∗1),

Γ(γ∗1) = Aʹ
2(γ

∗
1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2(γ∗1)
√

,

. 

where 
Aʹ

1(γ∗1) = 0, Aʹ
2(γ∗1) = a[3]13w∗, Aʹ

3(γ∗1) = a[3]12a[3]23w∗. 
Hence, condition (19) gives 

Θ(γ∗1)ψ(γ∗1)+ Γ(γ∗1)φ(γ∗1) = − 2A2(γ∗1)w∗[a[3]12a[3]23 − a[3]
13A

ʹ
1(γ

∗
1)] ∕= 0. 

That means the Hopf bifurcation has occurred at γ∗1. 
From Theorem 9, the stability condition of the stable limit cycle in R3

(u,v,w)

is presented using the coefficient of curvature of the limit cycle [36]. For a 
detailed discussion, we refer to [27]. 

Theorem 9. The DOPZ System has a stable limit cycle in R3
(u,v,w)

, if the 
following conditions are true: 

r(k + k0)

(a1 + w0 − w)kk0w
<

2ur
(a1 + w0 − w)kk0w

+
sw0

uw2 +
d

w2,
r(k + k0)

(a1 + w0 − w)kk0w
>

2ur
(a1 + w0 − w)kk0w

+
sw0

uw2 +
d

w2 (15)   
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[
3r(u1 + u∗) − r(k + k0)

8(a1 + w0 − u3 − w∗)kk0

]

α1(1 − m) <
3r

4(a1 + w0 − u3 − w∗)kk0
(21) 

Proof: - We first shift the CEP, F3 = (u∗, v∗,w∗) to (0,0, 0) by using the 
following transformations u = u1 + u∗, v = u2 + v∗, w = u3 + w∗. Then the 
DOPZ system becomes: 

du1
dt =

r(u1+u∗)

(a1+w0 − u3 − w∗)kk0
[ − (u1 + u∗)

2
+ (u1 + u∗)(k + k0) − kk0] −

α1(u1 + u∗)(u2 + v∗)(1 − m) − (u1 + u∗)δ1. 
du2
dt =

α2(u1+u∗)(u2+v∗)(1− m)

(a2+w0 − u3 − w∗)
− δ2(u2 + v∗) − a(u1 + u∗)(u2 + v∗)(1 − m). 

du3
dt = s[w0 − (u3 + w∗)]+ d(u1 + u∗) − γ(u3 + w∗) − γ1(u1 +

u∗)(u3 + w∗) − γ2(u2 + v∗)(u3 + w∗), where the nonlinear part of the 
above system is presented in the following matrix is.   

We derive the following characteristic quantities from the nonlinear part: 

g0
20 = 1

4

{
∂2℧1
∂u2

1
− ∂2℧1

∂u2
2
+ 2 ∂2℧2

∂u1∂u2
+ i

(
∂2℧2
∂u2

1
− ∂2℧2

∂u2
2
− 2 ∂2℧1

∂u1∂u2

)}
=

1
2

{
− 3r(u1+u∗)+r(k+k0)
(a1+w0 − u3 − w∗)kk0

+
α2(1− m)

(a2+w0 − u3 − w∗)
− a(1 − m) + α1(1 − m)i

}
,

g0
11 = 1

4

{
∂2℧1
∂u2

1
+ ∂2℧1

∂u2
2
+ i

(
∂2℧2
∂u2

1
+ ∂2℧2

∂u2
2

)}
= 1

2

{
− 3r(u1+u∗)+r(k+k0)
(a1+w0 − u3 − w∗)kk0

}
, 

G0
110 = 1

2

{
∂2℧1

∂u1∂u3
+ ∂2℧2

∂u2∂u3
+ i

(
∂2℧2

∂u1∂u3
− ∂2℧1

∂u2∂u3

)}
= 1

2

{
− 3r(u1+u∗)

2
+2r(k+k0)

(a1+w0 − u3 − w∗)
2kk0

−

r
(a1+w0 − u3 − w∗)

2 +
α2(u1+u∗)(1− m)

(a2+w0 − u3 − w∗)
2 + i

(
α2(u2+v∗)(1− m)

(a2+w0 − u3 − w∗)
2

)}
, 

G0
101 = 1

2

{
∂2℧1

∂u1∂u3
− ∂2℧2

∂u2∂u3
+ i

(
∂2℧2

∂u1∂u3
+ ∂2℧1

∂u2∂u3

)}
= 1

2

{
− 3r(u1+u∗)

2
+2r(k+k0)

(a1+w0 − u3 − w∗)
2kk0

−

r
(a1+w0 − u3 − w∗)

2 −
α2(u1+u∗)(1− m)

(a2+w0 − u3 − w∗)
2 + i

(
α2(u2+v∗)(1− m)

(a2+w0 − u3 − w∗)
2

)}
, 

W0
11 = − 1

4λ3(a1(k∗
)

(
∂2℧3
∂u2

1
+ ∂2℧3

∂u2
2

)
= 0, 

W0
20 = − 1

4λ3(a1(k∗
)

(
∂2℧3
∂u2

1
+ ∂2℧3

∂u2
2
− 2i ∂2℧3

∂u1∂u2

)
= 0, 

G0
21 = 1

8

{
∂3℧1
∂u3

1
+ ∂3℧1

∂u1∂u2
2
+ ∂3℧2

∂u3
2
+ ∂3℧2

∂u2
1∂u2

+ i
(

∂3℧2
∂u3

1
+ ∂3℧2

∂u1∂u2
2
− ∂3℧1

∂u3
2
−

∂3℧1
∂u2

1∂u2

)}
= − 3r

4(a1+w0 − u3 − w∗)kk0
, 

Thus, the coefficient of the curvature of the limit cycle of the DOPZ system 

(1) is given by 

σ0
1 = Re

{
g0

20g0
11

4 i + G0
110W0

11 +
G0

21+G0
101W0

20
2

}
, 

σ0
1 = Re

{(
6r2(u1+u∗)

2
+r2(k+k0)

2

8(a1+w0 − u3 − w∗)
2k2k2

0

)
i +

[
3r(u1+u∗)− r(k+k0)

8(a1+w0 − u3 − w∗)kk0

]
α1(1 − m) −

3r
4(a1+w0 − u3 − w∗)kk0

}
=

[
3r(u1+u∗)− r(k+k0)

8(a1+w0 − u3 − w∗)kk0

]
α1(1 − m) − 3r

4(a1+w0 − u3 − w∗)kk0
. 

Thus, Condition (21) guarantees that the DOPZ system has a stable limit 
cycle. 

3.5. Numerical simulations 

To validate our theoretical conclusions and get insight into the many 
possible dynamics of the DOPZ model, we conduct a numerical simu-

lation here. In this research, all figures were created in MATLAB 2019b 
and were constructed and designed similarly to those in Refs. [37–41], 
and the numerical solution to our system was found using the ode45 
solver. Our primary objective is to examine the dynamics of the DOPZ 
system when the Allee effect is amplified in phytoplankton. For the 
specified variables: 

r=0.445533, k = 4, k0 = 1,α1 = 0.4, α2 = 0.28, δ1 = 0.1, δ2 = 0.3,m

= 0.36, a1 = 0.2, a2 = 0.2,w0 = 3, a = 0.1, s = 2.85, γ1

= 0.18, γ2 = 0.2, γ = 0.2, d = 1
(22) 

and with different initial values, it is observed from Fig. 2 that F3 =

(1.23,2.32,2.61) is a globally asymptotically stable point. 
To examine the effect of varying one parameter at a time on the 

behaviour of the DOPZ system, the DOPZ model has been numerically 
resolved for the data in (22). In light of this, Figs. 3–4 investigate the 
effect of change in the critical phytoplankton level k0 (Allee threshold) 
on the stability behaviour of the DOPZ model. The simulation shows rich 
dynamics when it is changed. For example, when k0 ≤ 0.001, the DOPZ 
model has no CEP, and the solution settles down to DOEP in the w- axis. 

Fig. 2. Phase diagram of the DOPZ model with the data set supplied by (22) and varying initial values.  

℧ =

⎛

⎝
℧1
℧2
℧3

⎞

⎠ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r(u1 + u∗)

(a1 + w0 − u3 − w∗)kk0

[
− (u1 + u∗)

2
+ (u1 + u∗)(k + k0) − kk0

]
− α1(1 − m)u1u2

α2(u1 + u∗)(u2 + v∗)(1 − m)

(a2 + w0 − u3 − w∗)
− a(1 − m)u1u2

− γ1u1u3 − γ2u2u3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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While for the range 0.001 < k0 ≤ 0.01, the solution converges asymp-
totically to ZFEP on uw- plane. For 0.01 < k0 ≤ 2, the solution converges 
asymptotically to CEP. On the other hand, for k0 ≥ 2.1, the solution 
shows a periodic attractor behaviour. 

Further, Fig. 5 investigates the effect of change in the consumption 
rate of oxygen by the phytoplankton during the night (γ1) on the 

stability properties of the DOPZ model. It shows for γ1 ≥ 0.78, the DOPZ 
model has no CEP, and the solution settles down to ZFEP in the uw- 
plane. While for the range 0.001 < γ1 < 0.78, the solution converges 
asymptotically to CEP in an oscillatory way. On the other hand, for a 
small γ1 ≤ 0.001 the solution shows a periodic attractor behaviour. The 
latter result confirms the one that has been obtained in Theorems 8-9, 

Fig. 3. (a) Time series of the DOPZ system with k0 = 0.001; (b) phase diagram corresponding to (a); (c) time series with k0 = 0.01; (d) phase diagram of (c); (e) time series 
with k0 = 0.1; (f) phase diagram of (e). 

Fig. 4. (a) Time series of the DOPZ system with k0 = 2; (b) phase diagram corresponding to (a); (c) time series with k0 = 2.1; (d) phase diagram of (c).  
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which establishes the existence of Hopf bifurcation at γ∗1 = 0.001 and the 
stability of the obtained limit cycle. 

Now the effect of changing the concentration of dissolved oxygen 
that comes from several sources (w0) is explored in Fig. 6. The figure 
shows that the solution settles asymptotically to the CEP, F3 = (0.96,
3.26, 1.77), for w0 > 1.9. Further, the solution approaches a periodic 
attractor for w0 ≤ 1.9. Accordingly, a decrease in w0 results in a drop in 
the DOPZ model’s stability, which implies that condition 10 of Theorem 
3 is broken and the system’s (1) behaviour changes from global stability 
to periodic behaviour. The system in this instance is getting closer to a 
stable periodic attractor as a result of this outcome, which satisfies 

requirement 21 that is stated in Theorem 9. 
Further, Fig. 7 illustrates the impact of varying the phytoplankton’s 

growth rate r, on the behaviour of the DOPZ system. The solution sta-
bilizes at its positive equilibrium point CEP for r ≥ 0.1. The solution 
settles down to the dissolved oxygen equilibrium point (F1) when r <
0.1. Consequently, a decrease in r leads to extinction in the plankton 
populations hence the stability behaviour shifts from the positive equi-
librium point (F3) to the dissolved oxygen equilibrium point (F1). This 
result suggests that condition 21 of Theorem 9 is violated, in this case, 
faces a transcritical bifurcation between F1 and F3. 

Next, Fig. 8 depicts the impact of varying the conservation rate from 

Fig. 5. (a) Time series of the DOPZ system with γ1 = 0.78; (b) phase diagram corresponding to (a); (c) time series with γ1 = 0.01; (d) phase diagram of (c); (e) time series 
with γ1 = 0.001; (f) phase diagram of (e). 

Fig. 6. (a) Time series of the DOPZ system with w0 = 2; (b) phase diagram corresponding to (a); (c) time series with w0 = 1.9; (d) phase diagram of (c).  
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phytoplankton to zooplankton α2 on the behaviour of the DOPZ system. 
The solution asymptotically approaches the CEP for α2 ≥ 0.1, while the 
solution converges to the ZFEP in the uw- plane F2 in Int. R2

+(uw)
when 

α2 < 0.1. This means that F2 loses stability at α2 = 0.1. As a conse-
quence, the outcome that was given by Theorem 4 has been demon-
strated to be accurate by the numerical simulations. 

Fig. 7. (a) Time series of the DOPZ system with r = 0.9; (b) phase diagram corresponding to (a); (c) time series with r = 0. 1; (d) phase diagram of (c); (e) time series with 
r = 0.01; (f) phase diagram of (e). 

Fig. 8. (a) Time series of the DOPZ system with α2 = 0.9; (b) phase diagram corresponding to (a); (c) time series with α2 = 0. 1; (d) phase diagram of (c); (e) time series 
with α2 = 0.01; (f) phase diagram of (e). 
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In addition, Fig. 9 displays the influence of varying the consumption 
of oxygen by zooplankton (γ2). Clearly, the solution approaches the CEP 
level when γ2 ≥ 0.1. Further, for γ2 < 0.1, the solution becomes a peri-
odic attractor. 

Now, Fig. 10 discusses the effect of changing δ1 on the behaviour of 

the DOPZ. The simulation shows for δ1 ≤ 0.67, the solution accesses its 
CEP level. Further, for δ1 > 0.67, the solution encounters a periodic 
attractor. 

Next, the influence of changing δ2 is investigated in Fig. 11. The 
simulation illustrates that for δ2 ≥ 0.13, the solution stabilizes at its CEP 

Fig. 9. (a) Time series of the DOPZ system with γ2 = 0.9; (b) phase diagram corresponding to (a); (c) time series with γ2 = 0.1; (d) phase diagram of (c); (e) time series 
with γ2 = 0.01; (f) phase diagram of (e). 

Fig. 10. (a) Time series of the DOPZ system with δ1 = 0.67; (b) phase diagram corresponding to (a); (c) time series with δ1 = 0.68; (d) phase diagram of (c); (e) time 
series with δ1 = 0.0001; (f) phase diagram of (e). 
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level, while for δ2 < 0.13 the solution follows a periodic attractor. 
Finally, for varying the following parameters each time α1, s, d,m, a,

γ, a1 and a2, the solution approaches its CEP in the interior of R3
(u,v,w)

. For 
instance, see Fig. 12. 

4. Discussion 

This paper modified the dissolved oxygen-plankton model to include 
a strong Allee effect in the phytoplankton population taking into account 
that the zooplankton feeds on both toxic and non-toxic phytoplankton. 
The idea is to figure out how this kind of growth affects the dynamics of 

Fig. 11. (a) Time series of the DOPZ system with δ2 = 0.9; (b) phase diagram corresponding to (a); (c) time series with δ2 = 0.13; (d) phase diagram of (c); (e) time series 
with δ2 = 0.129; (f) phase diagram of (e). 

Fig. 12. (a) Time series of the DOPZ system with a2 = 0.9; (b) phase diagram corresponding to (a); (c) time series with a2 = 0.001; (d) phase diagram of (c).  
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an aquatic environment. The system underwent theoretical and nu-
merical analysis. The theoretical results detect that there are three 
steady states; the first one is the dissolved oxygen equilibrium point 
DOEP which always has stable behaviour. The second one is the 
zooplankton-free equilibrium point ZFEP which shows stable behaviour 
under certain conditions; otherwise, it could have become unstable, 
leading to bifurcations of saddle-node or periodic nature. The third one 
is CEP which also could be stable or unstable depending on specific 
conditions. The essential conditions have been found to ensure the 
happening of different types of bifurcation around the ZFEP and CEP. 
Nonetheless, the numerical simulation deduced when the stability 
criteria are met, the DOPZ system always sways about the CEP. Further, 
changing the critical phytoplankton level k0 (Allee threshold), the so-
lution presents diverse dynamics, such as extinction only for the 
phytoplankton population, extinction for both plankton species, persis-
tence of all components, or periodic attractor dynamics. Thus, it can be 
considered a critical parameter affecting the whole system’s dynamics. 
Moreover, for large γ1, the consumption rate of oxygen by the phyto-
plankton during the night, and for small α2, the zooplankton population 
undergoes extinction, and so the solution of the DOPZ system is moved 
from the CEP to a ZFEP. In addition, for small r, the phytoplankton’s 
growth rate, both phytoplankton and zooplankton populations face 
extinction. However, for small γ1, γ2, δ2 w0, the DOPZ system shows limit 
cycle behaviour. The same behaviour could be detected for large δ1. 
Finally, the solution is stabilized at the CEP when the remaining pa-
rameters are changed. 

5. Conclusion 

The strong Allee effect type of growth term for the phytoplankton 
population was incorporated in this work. This seems necessary since 
phytoplankton, which is responsible for an estimated 50–80 % of the 
world’s oxygen generation, is becoming more and more endangered 
because of the increase in waste thrown into the water, in particular 
industrial waste. This, in turn, leads to damage of the other marine 
species. Therefore, it is reasonable to ask: How could we avoid the 
extinction of phytoplankton? Theorem 3 shows the conditions which 
guarantee that phytoplankton and zooplankton populations can coexist 
in a stable state. However, the simulation shows the system 

demonstrates many phenomena such as coexistence, extinction, and the 
limit cycle by altering the parametric values. These phenomena are 
fundamental characteristics of non-linear models. Further, the simula-
tion illustrations that if k0 (Allee threshold of the phytoplankton popu-
lation) and γ (The natural depletion rate of oxygen) cannot be 
controlled, the two species are threatened with extinction. For instance, 
the plankton population faces extinction at k0 ≤ 0.001, while 
zooplankton faces extinction for 0.001 < k0 ≤ 0.01. For 0.01 < k0 ≤ 2, 
the solution stabilized at the coexistence state. However, when k0 ≥ 2.1, 
the solution exhibits periodic attractor behaviour. 

Finally, we suggest considering a stage structure for the zooplankton 
population in future work by expanding the model to include a system 
with four components. Further, the zooplankton population are assumed 
to grow logistically in the absence of the phytoplankton species, in this 
case, the latter is considered additional food for zooplankton. 
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Appendix 

The coefficient of equation (2) is defined below as: 

B0 = a2(am1 − γ1m2),

B1 =3a2m1m3 + a2γ1m2m4 + a2m2m7(d+ γ1) − a3m5 − a3m1m4 − 2am2m6  

B2 =m1
[
2α2

2a − 4α2a2a2 − 4α2a2w0 +3a2a2
2 +6a3a2w0 +2a3w2

0 + α2a − 2α2a2a2 − 2α2a2w0 + a3w2
0
]
− 3a2m5m3 + a3m4m5

− 3a2m1m3m4 +m2
[
2γ1m6m4 −

(
α2 − 2α2am7 + a2a2

2 +2a2a2w0 + a2w0
)
− a2m4 +2m6m7(d+ γ) − a2dm7

]
+ γ1rδ2 + a(m8 − m9)

B3 =m1
[
α3

2 − 3α2
2aa2 − 3α2

2aw0 +3α2a2a2
2 +6α2a2a2w0 +4α2a2w2

0 − a3a3
2 − 3a3a3

2w0 − a2a2w2
0 − 2a3a2w2

0 + a3w3
0
]
− m5

[
2α2

2a − 4α2a2a2

− 4α2a2w0 +3a2a2
2 +6a3a2w0 +2a3w2

0 +α2a − 2α2a2a2 − 2α2a2w0 + a3w2
0
]
+3a2m5m4 − m1m4

[
2α2

2a − 4α2a2a2

− 4α2a2w0 +3a3a2
2 +4a3a2w0 +2a3w2

0 +α2a − 2α2a2a2 − α2a2w0 +2a3a2w0 + a3w0
]
+m2

[
γ1m4

(
α2 − 2α2aa2 − 2α2aw0 + a2a2

2 +2a2a2w0 + a2w0
)

− 2am3m4 −
(
α2 − 2α2aa2 − 2α2aw0 + a2a2

2 +2a2a2w0 + a2w0
)
(d+ γ1)m7 +

(
a2m4 − 2am3

)
(dm7)

]
− 2γ1rδ2m7 − m8(2am7 − α2)+m9(ra+ δ1am4

− α2 + am7)B4 =m4m5
[
2α2

2a − 4α2a2a2 − 4α2a2w0 +3a2a2
2 +6a3a2w0 +2a3w2

0 +α2a − 2α2a2a2 − 2α2a2w0 +3a3w2
0
]
− m5

[
α3

2 − 3α2
2aa2

− 3α2
2aw0 +3α2a2a2

2 +6α2a2a2w0 +4α2a2w2
0 − a3a3

2 − 3a3a3
2w0 − a2a2w2

0 − 2a3a2w2
0 + a3w3

0
]
− m1m4

[
α3

2 − 3α2
2aa2

− 3α2
2aw0 +3α2a2a2

2 +6α2a2a2w0 +4α2a2w2
0 − a3a3

2 − 3a3a3
2w0 − a2a2w2

0 − 2a3a2w2
0 + a3w3

0
]
+m2

[
2am3m4 − dm7

(
α2 − 2α2aa2

− 2α2aw0 + a2a2
2 +2a2a2w0 + a2w0

)
−
(
α2 − 2α2aa2 − 2α2aw0 + a2a2

2 +2a2a2w0 + a2w2
0
)
(dm4 + γ1m4m7)

]
+ γ1rδ2

1m2
7 − m7(α2m8 + am7) + m9(rα2

− ram7 + δ1α2m4 − aδ1m4m7)
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B5 =m4m5
[
α3

2 − 3α2
2aa2 − 3α2

2aw0 +3α2a2a2
2 +6α2a2a2w0 +4α2a2w0 − a3a3

2 − 3a3a3
2w0 − a2a2w2

0 − 2a3a2w2
0 + a3w3

0
]
+ m2m4m7d

(
α2 − 2α2aa2

− 2α2aw0 + a2a2
2 +2a2a2w0 + a2w2

0
)
.

Here m1 = (s + γ)(1 − m)
4α1kk0, m2 = δ1α1kk0(1 − m)

3, m3 = α2 − aa2 − aw0, m4 = a1 + w0, m5 = sw0α1kk0(1 − m)
4, m6 = α2a − aa2

2 − a2w0, m7 =

a2 + w0, m8 = rγ1δ1(k + k0)(1 − m), m9 = γ1kk0(1 − m). 
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