Preferred Language
Articles
/
tReXdpIBVTCNdQwCSrDL
Asymptotic Stability of 3D Stochastic Positive Linear Systems with Delays

The article emphasizes that 3D stochastic positive linear system with delays is asymptotically stable and depends on the sum of the system matrices and at the same time independent on the values and numbers of the delays. Moreover, the asymptotic stability test of this system with delays can be abridged to the check of its corresponding 2D stochastic positive linear systems without delays. Many theorems were applied to prove that asymptotic stability for 3D stochastic positive linear systems with delays are equivalent to 2D stochastic positive linear systems without delays. The efficiency of the given methods is illustrated on some numerical examples. HIGHLIGHTS Various theorems were applied to prove the asymptotic stability of 3D stochastic positive linear system with delays. Moreover, this system can be reduced to 2D stochastic positive linear system without delays Asymptotic stability of 3D stochastic positive linear systems with delays depends on the summation of system matrices and independent on numbers and values of delays for that system The principal minors and the coefficients for characteristic polynomials of 3D stochastic linear systems were applied to demonstrate the asymptotic stability when they are all positive

Scopus Crossref
View Publication
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of Second Order Half Linear Neutral Dynamic Equations

     The oscillation property of the second order half linear dynamic equation was studied, some sufficient conditions were obtained to ensure the oscillation of all solutions of the equation. The results are supported by illustrative examples.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Oscillations of First Order Linear Delay Differential Equations with positive and negative coefficients

Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.

Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Oscillation and Asymptotic Behavior of a Three-Dimensional Half-Linear System of Third-Order of Neutral Type

     In this paper, the oscillatory properties and asymptotic behaviour of a third-order three-dimensional neutral system are discussed.  Some sufficient conditions are obtained to ensure that all bounded positive solutions of the system are oscillatory or non-oscillatory.  On the other hand, the non-oscillatory solutions either converge or diverge when  goes to infinity. A special technique is adopted to include all possible cases. The obtained results include illustrative examples.

Scopus Crossref
View Publication Preview PDF
Publication Date
Tue May 05 2015
Journal Name
International Journal Of Advanced Scientific And Technical Research
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Stability of Nonlinear Systems of Fractional Order Differential Equations

In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.

Crossref
View Publication Preview PDF
Publication Date
Thu Jun 16 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Optimization algorithms for transportation problems with stochastic demand

The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Jun 05 2011
Journal Name
Baghdad Science Journal
Some Probability Characteristics Functions of the Solution of a Stochastic Non-Linear Fredholm Integral Equation of the Second Kind

In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Neuro-Self Tuning Adaptive Controller for Non-Linear Dynamical Systems

In this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl

... Show More
View Publication Preview PDF
Publication Date
Thu May 04 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Discuss of Error Analysis of Gauss-Jordan Elimination For Linear Algebraic Systems

The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very

... Show More
View Publication Preview PDF