There are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.
The research aims to measure, assess and evaluate the efficiency of the directorates of Anbar Municipalities by using the Data Envelopment Analysis method (DEA). This is because the municipality sector is consider an important sector and has a direct contact with the citizen’s life. Provides essential services to citizens. The researcher used a case study method, and the sources of information collection based on data were monthly reports, the research population is represented by the Directorate of Anbar Municipalities, and the research sample consists of 7 municipalities which are different in terms of category and size of different types. The most important conclusion reached by the research i
... Show MoreReligion in its general and simplified form is defined as a set of values or moral laws, which include provisions that people should follow to organize their affairs and ratify that they are provisions sent from the divine.
The concept of religion is not limited to the narrower sense represented by the performance of the virtual rituals of worship and religious fashions, etc., but also includes all the moral and spiritual values, conduct and good dealing that reflect the true essence of religion, which boils down to a set of values – such as sincerity, honesty and dedication to work, merciful dealing and compassion, etc. All religions agree on the moral content of religion. The Prophet of Is
... Show MoreThe financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show MoreIndium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
This study focused on treatment of real wastewater rejected from leather industry in Al-Nahrawan city in Iraq by Electrocoagulation (EC) process followed by Reverse Osmosis (RO) process. The successive treatment was applied due to high concentration of Cr3+ ions (about 1600 ppm) rejected in wastewater of this industry and for applying EC with moderate power consumption and better results of produced water. In Electrocoagulation process (EC), the effect of NaCl concentration (1.5, 3 g/l), current density (C.D.) (15-25 mA/cm2), electrolysis time (1-2 h), and distance between electrodes (E.D.) (1-2 cm) were examined in a batch cell by implementing Taguchi experimental design. According to the results obtained from multiple regression and signa
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show More
