Preferred Language
Articles
/
OBepL48BVTCNdQwCo14C
Distinguishing Cartoons Images from Real –Life Images
...Show More Authors

Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Distinguishing Shapes of Breast Cancer Masses in Ultrasound Images by Using Logistic Regression Model
...Show More Authors

The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
New algorithms to Enhanced Fused Images from Auto-Focus Images
...Show More Authors

Enhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Change Detection between Landsat 8 images and Sentinel-2 images
...Show More Authors

     The technology of change detection is a technique by which changes are verified in a certain time period. Remote sensing images are used to detect changes in agriculture land for the selected study area located south of Baghdad governorate in Agricultural Division of AL-Rasheed district because this method is very effective for assessing change compared to other traditional scanning techniques. In this research two remotely sensed images for the study area were taken by Landsat 8 and Sentinel-2, the difference between them is one month to monitor the change in the winter crops, especially the wheat crop, where the agriculture began for the wheat crop there in the Agricultural Division of AL-Rasheed district at 15

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jan 25 2022
Journal Name
Iraqi Journal Of Science
A Modified Segmentation Approach for Real World Images Based on Edge Density Associated with Image Contrast Stretching
...Show More Authors

Segmentation of real world images considered as one of the most challenging tasks in the computer vision field due to several issues that associated with this kind of images such as high interference between object foreground and background, complicated objects and the pixels intensities of the object and background are almost similar in some cases. This research has introduced a modified adaptive segmentation process with image contrast stretching namely Gamma Stretching to improve the segmentation problem. The iterative segmentation process based on the proposed criteria has given the flexibility to the segmentation process in finding the suitable region of interest. As well as, the using of Gamma stretching will help in separating the

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 20 2009
Journal Name
Ijcsns International Journal Of Computer Science And Network Security
Pre-processing Importance for Extracting Contours from Noisy Echocardiographic Images
...Show More Authors

Contours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.

Preview PDF
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Intelligent Age Estimation From Facial Images Using Machine Learning Techniques
...Show More Authors

     Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Medical Image Enhancement to Extract Brain Tumors from CT and MRI images
...Show More Authors

     Always MRI and CT Medical images are noisy so that preprocessing is necessary for enhance these images to assist clinicians and make accurate diagnosis. Firstly, in the proposed method uses two denoising filters (Median and Slantlet) are applied to images in parallel and the best enhanced image gained from both filters is voted by use PSNR and MSE as image quality measurements. Next, extraction of brain tumor from cleaned images is done by segmentation method based on k-mean.  The result shows that the proposed method is giving an optimal solution due to denoising method which is based on multiple filter types to obtain best clear images and that is leads to make the extraction of tumor more precision best.<

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Feature Extraction Using Remote Sensing Images
...Show More Authors

Feature extraction provide a quick process for extracting object from remote sensing data (images) saving time to urban planner or GIS user from digitizing hundreds of time by hand. In the present work manual, rule based, and classification methods have been applied. And using an object- based approach to classify imagery. From the result, we obtained that each method is suitable for extraction depending on the properties of the object, for example, manual method is convenient for object, which is clear, and have sufficient area, also choosing scale and merge level have significant effect on the classification process and the accuracy of object extraction. Also from the results the rule-based method is more suitable method for extracting

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Physics
Wavelet compression for remotely sensed images
...Show More Authors

Image compression is very important in reducing the costs of data storage transmission in relatively slow channels. Wavelet transform has received significant attention because their multiresolution decomposition that allows efficient image analysis. This paper attempts to give an understanding of the wavelet transform using two more popular examples for wavelet transform, Haar and Daubechies techniques, and make compression between their effects on the image compression.

View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF