By using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees of annealing temperature. Additionally, Urbach energy values decrease with an increase in annealing temperature degrees, indicating a reduction in the tail defects and an enhancement in crystal structure through annealing. The produced films' conductivity raise when temperature in the range (RT-473)K increased, demonstrating that they are semiconducting films. At comparatively lower temperature degrees, the conduction is caused by carriers that are stimulated into localized states at the band edges. At relatively higher temperatures, the conductivity appears to be substantially temperature-dependent. As a result, the conduction mechanism results from carriers being excited into extended states beyond mobility edges. The photovoltaic measurement (I–V) properties, open circuit voltage, short circuit current, efficiency and fill factor of (CdS)0.75-(PbS)0.25 heterostructure cells have been examined under 100mW/cm2 . Interestingly, rising annealing had enhanced photovoltaic cell performances; the solar cell had shown its highest efficiency (0.42%) at 573K. From XRD the structures are polycrystalline with cubic and hexagonal structures indicating that there’s a mix of phases of PbS and CdS, the grain size and intensity raise with annealing temperatures.
Objective(s): Biocompatibility, non-toxicity, minimal allergenicity, and biodegradability are all characteristics of chitosan. Other biological properties of chitosan have been reported, including antitumor, antimicrobial and antioxidant activities. This research aim is the synthesis of drug compounds by preparation and characterization of polymer chitosan Schiff base and chitosan Schiff base / Poly vinyl alcohol / poly vinyl pyrrolidone Nanocomposite and study applications (anticancer cell line, antimicrobial agents). Methods: Chitosan Schiff base was prepared from the reaction of chitosan with carbonyl group of 4-nitro benzaldehyde. Polymer blend have been prepared by solution casting method. Chitosan Schiff base mixing with PVA and PVP
... Show MoreAluminum oxide (ALO) was grafted by acrylic acid monomer (AlO-AM) and then, it was polymerized to produce alumina grafted poly(acrylic acid) (AlO-AP). The prepared AlO-AM and AlO-AP were characterized by Fourier-transform infrared, differential scanning calorimetry , thermogravemetric analyzer and particle size distribution. Adsorption equilibrium isotherms, adsorption kinetics and thermodynamic studies of the batch adsorption process were used to examine the fundamental adsorption properties of phenol (P) and p-chlorophenol (PCP). The experimental equilibrium adsorption data were analyzed by three widely used two-parameters Langmuir, Freundlich and DubininRadushkevich isotherms. The maximum P and PCP adsorption capacities based on t
... Show MoreQuantum dots (QDs) of cadmium sulfide (CdS) was prepared by chemical
reaction method with different potential of hydrogen (pH) values. The
morphological and optical measurements of cadmium sulfide QDs were considered
by atomic force microscopy (AFM), ultraviolet-visible (UV-VIS.) and
photoluminescence (PL) spectrometer respectively. The energy gap (Eg) was
calculated from photoluminescence spectra were found to be about 2.7, 2.6 and 2.5
eV at pH values 8, 10 and 12 respectively for CdS QDs. The decreasing of energy
gaps is rises from the effect the pH solution increases, which in turn leads to the
shifted of the PL spectrum toward red shifted, which creates the energy bands at
surface states are shallow bands.
The [2-aminobenzothiazole]was reacted with [2,4,6 triyhydroxy-acetophenon monohydrate] to give a new ligand [2-N-2,4,6-trihydroxyacetophenonyliden benzothiazole] [H3L]. This ligand was reacted with metal ions ( CoII, NiII,CuII and ZnII) in methanol as solvent with ( 1:2 ) metal : ligand ratio to give a series of new complexes with general formula [ M(H2L)2],(where:M= CoII, NiII ,CuIIand, ZnII).All compounds were characterized by spectroscopic methods ( I.R , U.V – vis,HPLC) atomic absorption, along with chloride content and conductivity measurements. According to the data of these measurements we suggested a tetrahedral
A newly flow injection-turbidimetric method characterized by it is speed and sensitivity has been developed for the determination of Amiloride in pure and pharmaceutical preparations. It is based on the formation of yellowish white precipitate for the Amiloride-phosphomolybidic acid ion pair in aqueous medium. Turbidity was measured by Ayah 6Sx1-T-1D solar cell CFI analyser via the attenuation of incident light from the surfaces precipitated particles at 0-180. The Chemical and physical parameters were investigated. Linear dynamic range for the attenuation of incident light versus Amiloride concentration was of 0.005-10 mmol.L-1, with the correlation coefficient (r) of 0.9986 , while the percentage linearity (r2%) was 99.71%. The L.O.
... Show MoreA newly flow injection-turbidimetric method characterized by it is speed and sensitivity has been developed for the determination of Amiloride in pure and pharmaceutical preparations. It is based on the formation of yellowish white precipitate for the Amiloride-phosphomolybidic acid ion pair in aqueous medium. Turbidity was measured by Ayah 6Sx1-T-1D solar cell CFI analyser via the attenuation of incident light from the surfaces precipitated particles at 0-180. The Chemical and physical parameters were investigated. Linear dynamic range for the attenuation of incident light versus Amiloride concentration was of 0.005-10 mmol.L-1, with the correlation coefficient (r) of 0.9986 , while the percentage linearity (r2%) was 99.71%. The L.O.
... Show MoreIn this work, porous Silicon structures are formed with photochemical etching process of n-type Silicon(111) wafers of resistivity (0.02.cm) in hydrofluoric acid (HF) of concentration (39%wt) under light source of tungeston halogen lamp of (100 Watt) power. Samples were anodized in a solution of 39%HF and ethanol at 1:1 for 15 minutes. The samples were realized on n-type Si substrates Porous Silicon layers of 100m thickness and 30% of porousity. Frequency dependence of conductivity for Al/PSi/Si/Al sandwich form was studied. A frequency range of 102-106Hz was used allowing an accurate determination of the impedance components. Their electronic transport parameters were determined using complex impedance measurements. These measu
... Show MoreNew chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complex
... Show More