Preferred Language
Articles
/
sRiZVpUBVTCNdQwCKizm
Automated Glaucoma Detection Techniques: A Literature Review
...Show More Authors

Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing on ML and DL techniques were selected. The best performance metrics obtained using ML recorded in the reviewed papers, were for the SVM, which achieved accuracies of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, DRISHTI-GS, and sjchoi86-HRF databases, respectively, employing the REFUGE-trained model, while when deploying the ACRIMA-trained model, it attained accuracies of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36%, in the same databases, respectively. The best performance metrics obtained utilizing DL recorded in the reviewed papers, were for the lightweight CNN, with an accuracy of 99.67% in the Diabetic Retinopathy (DR) and 96.5% in the Glaucoma (GL) databases. In the context of non-healthy screening, CNN achieved an accuracy of 99.03% when distinguishing between GL and DR cases. Finally, the best performance metrics were obtained using ensemble learning methods, which achieved an accuracy of 100%, specificity of 100%, and sensitivity of 100%. The current review offers valuable insights for clinicians and summarizes the recent techniques used by the ML and DL for glaucoma detection, including algorithms, databases, and evaluation criteria.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2002
Journal Name
Iraqi Journal Of Physics
An edge detection algorithm matching visual contour perception
...Show More Authors

For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.

View Publication Preview PDF
Publication Date
Tue Jul 11 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effect of the Six Thinking Hats Strategy on the Development of Essay Writing Skills and Creativity in It among Persian-Speaking Students Who are Studying Arabic Language and Literature At Shiraz University: Literature and Humanities, Shiraz University
...Show More Authors

The study aims to investigate the effect of the Six Thinking Hats Strategy on the achievement of essay writing skills among third-year students in Arabic Language and Literature who are Persian speakers enrolled in the course of Essay Writing (III) at Shiraz University for the academic year 2019-2020. The sample of the study consisted of (15) male and female students who were taught according to the pre-posttest, using the quasi-experimental approach. After applying the statistical analysis on the scores of the post-test, the results showed that there are statistically significant differences in the average of students' achievement in the skills of essay writing in terms of using the Six Thinking Hats Strategy. The results also proved th

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Detection, purification and characterization of a bacteriocin produced by Bacillus subtilis NK16 exhibits a significant antimicrobial activity against clinical Staphylococcus spp.
...Show More Authors

Bacteriocin is an important antimicrobial peptide that can be used in industrial and medical fields due to its characteristics of antibacterial, food preservation and anticancer activities. Fifty isolates of Bacillus sp were collected from different soil samples which were already recognized via morphological and biochemical identification process. The isolates were screened for bacteriocin production effective against Staphylococcus spp in order to select the highest producing isolate. The isolate NK16 showed the maximum bacteriocin production (80 AU/ml) which was further characterized as Bacillus subtilis NK 16 through using API identification system (API 20E and API 50CHB). Then, next step was to detect the optimal conditions for maximum

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jul 05 2025
Journal Name
Iraqi Journal Of Science
Intrusion Detection Approach Based on DNA Signature
...Show More Authors

View Publication
Publication Date
Fri May 03 2024
Journal Name
Optical And Quantum Electronics
Design and analysis of a dual-core PCF biosensor based on SPR for cancerous cells detection
...Show More Authors

View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Overlapping Structure Detection in Protein-Protein Interaction Networks Using a Modified Version of Particle Swarm Optimization
...Show More Authors

In today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Aug 06 2021
Journal Name
Research Journal Of Pharmacy And Technology
Molecular Detection and Genotyping of Human Herpes Virus 8 in a sample of Iraqi Blood Donors
...Show More Authors

Human herpes virus-8 (HHV-8) infection has increased recently in Arabic countries. HHV-8 in healthy persons does not necessarily cause life-threatening infection, and however, it causes a more severe infection among immunocompromised patients. The distribution of HHV-8 genotypes varies according to ethnicity and depends on the geographic region prior rapid development of global travel. A cross sectional prospective study included a hundred healthy blood donor samples with a mean age of (36.60±10.381), 81% were positive for molecular detection of HHV-8 DNA. PCR results for HHV-8 were strongly related with risk factors such as the number of sexual relations, previous surgeries, blood transfusion, dental operation, and the number of b

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Advances In Computing
A New Abnormality Detection Approach for T1-Weighted Magnetic Resonance Imaging Brain Slices Using Three Planes
...Show More Authors

Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co

... Show More
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Science
Detection of Zn Water Pollution by a Biosensor Based on Alkaloids Derived from Iraqi Catharanthus Roseus
...Show More Authors

     In this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability.  The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image

... Show More
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Detection of CTX-M-type ESBLs from Escherichia coli Clinical Isolates from a Tertiary Hospital, Malaysia
...Show More Authors

The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%).  After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref