Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing on ML and DL techniques were selected. The best performance metrics obtained using ML recorded in the reviewed papers, were for the SVM, which achieved accuracies of 98.31%, 98.61%, 96.43%, 96.67%, 95.24%, and 98.60% in the ACRIMA, REFUGE, RIM-ONE, ORIGA-light, DRISHTI-GS, and sjchoi86-HRF databases, respectively, employing the REFUGE-trained model, while when deploying the ACRIMA-trained model, it attained accuracies of 98.92%, 99.06%, 98.27%, 97.10%, 96.97%, and 96.36%, in the same databases, respectively. The best performance metrics obtained utilizing DL recorded in the reviewed papers, were for the lightweight CNN, with an accuracy of 99.67% in the Diabetic Retinopathy (DR) and 96.5% in the Glaucoma (GL) databases. In the context of non-healthy screening, CNN achieved an accuracy of 99.03% when distinguishing between GL and DR cases. Finally, the best performance metrics were obtained using ensemble learning methods, which achieved an accuracy of 100%, specificity of 100%, and sensitivity of 100%. The current review offers valuable insights for clinicians and summarizes the recent techniques used by the ML and DL for glaucoma detection, including algorithms, databases, and evaluation criteria.
Rationale, aims and objectives: A review of studies published over the last six years gives update about this hot topic. In the middle of COVID-19 pandemic, this study findings can help understand how population may perceive vaccinations. The objectives of this study were to review the literature covering the perceptions about influenza vaccines and to determine factors influencing the acceptance of vaccination using Health Belief Model (HBM). Methods: A comprehensive literature search was performed utilizing PubMed and Google Scholar databases. Three keywords were used: Influenza vaccine, perceptions, and Middle East. Empirical studies that dealt with people/ HCW perceptions of influenza vaccine in the Middle East and writt
... Show MoreA fixed firefighting system is a key component of fire safeguarding and reducing fire danger. It is installed as a permanent component in a structure to protect the entire or a portion of the building and its contents. The study aims to review the previous studies that deal with the evaluation of fire safety measures and their use in resolving problems associated with fire threats in buildings. For this reason, a number of previous studies in this field were reviewed compared with the NFPA code. The findings revealed that regulatory developments over the last several decades had created an atmosphere conducive to innovation. This has resulted in a growth in the number of fixed firefighting system types now obtainable. Th
... Show MoreThe novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19) which represents a global public health crisis. Based on recent published studies, this review discusses current evidence related to the transmission, clinical characteristics, diagnosis, management and prevention of COVID-19. It is hoped that this review article will provide a benefit for the public to well understand and deal with this new virus, and give a reference for future researches.
Exploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadira
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreIn this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) image
... Show More