For several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
In the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreThe picture has taken a place that sometimes enables it to take precedence over media analysis، psychology، and political communication.
The image has the ability to influence to obtain persuasion، not only emotionally or
dramatically، but also on the level of commercial and political persuasion. In every
image، the intention of that persuasion is hidden.
It can be identified by a set of underlying dimensions such as vitality، social dominance، and confidence، for which a group of specific suggestions or movements، such
as a smile، the movement of hands، or the nature and way of looking with the eyes، is
established. The visual image often precedes its verbal counterpart in the proce
In this paper, we devoted to use circular shape sliding block, in image edge determination. The circular blocks have symmetrical properties in all directions for the mask points around the central mask point. Therefore, the introduced method is efficient to be use in detecting image edges, in all directions curved edges, and lines. The results exhibit a very good performance in detecting image edges, comparing with other edge detectors results.
Making the data secure is more and more concerned in the communication era. This research is an attempt to make a more secured information message by using both encryption and steganography. The encryption phase is done with dynamic DNA complementary rules while DNA addition rules are done with secret key where both are based on the canny edge detection point of the cover image. The hiding phase is done after dividing the cover image into 8 blocks, the blocks that are used for hiding selected in reverse order exception the edge points. The experiments result shows that the method is reliable with high value in PSNR
A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreThe main targets for using the edge detection techniques in image processing are to reduce the number of features and find the edge of image based-contents. In this paper, comparisons have been demonstrated between classical methods (Canny, Sobel, Roberts, and Prewitt) and Fuzzy Logic Technique to detect the edges of different samples of image's contents and patterns. These methods are tested to detect edges of images that are corrupted with different types of noise such as (Gaussian, and Salt and pepper). The performance indices are mean square error and peak signal to noise ratio (MSE and PSNR). Finally, experimental results show that the proposed Fuzzy rules and membership function provide better results for both noisy and noise-free
... Show More