This study investigates the elimination of chemical oxygen demand (COD) from an Iraqi petroleum refinery effluent through a combined electro‐Fenton and adsorption process (EF+AC). Response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of FeSO 4 concentration, current density, and electrolysis time on the reduction of COD using the EF technique. According to the results of the analysis of variance (ANOVA) for the EF technique, FeSO 4 concentrations, with a contribution of 40.06%, and current density, with a contribution of 46.35%, exert a considerable influence. The optimum conditions for COD elimination rate (99.06%) and energy consumption (9.805 kWh/kg COD) were achieved using an electrolysis time of 85.12 min, a current density of 25 mA/cm 2 , and a concentration of 1.335 mM FeSO 4 . For the EF+AC process, a central composite design (CCD) was used to determine the influence of the packing level of activated carbon (AC) and the time on the reduction of COD at a constant current density of 5 mA/cm 2 and FeSO 4 concentration of 0.2 mM. The packing level of AC significantly influenced the elimination of COD, with time being the subsequent factor. The results showed that the optimal conditions led to a 98.77% removal of COD, requiring 0.91 kWh/kg COD. This efficiency and energy consumption were attained by using 92% packed AC and allowing the process to run for 85 min. EF+AC was found to have lower energy consumption and a smaller quantity of ferrous sulfate compared to EF. Notably, the current system offers a promising vision by combining the benefits of adsorption and electro‐Fenton for wastewater remediation.
In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In
... Show MoreLasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenom
... Show MoreIron slag is a byproduct generated in huge quantities from recycled remnants of iron and steel factories; therefore, the possibility of using this waste in the removal of benzaldehyde from contaminated water offers an excellent topic in sustainability field. Results reveal that the removal efficiency was equal to 85% for the interaction of slag and water contaminated with benzaldehyde at the best operational conditions of 0.3 g/100 mL, 6, 180 min, and 250 rpm for the sorbent dosage, initial pH, agitation time, and speed, respectively with 300 mg/L initial concentration. The maximum uptake capacity of iron slag was 118.25 mg/g which was calculated by the Langmuir model. Physical sorption may be the major mechanism for the removal of
... Show MoreIn this study, a new type of circulating three-phase fluidized bed reactor was conducted by adding a spiral path and was named as spiral three-phase fluidized bed reactor (TPFB-S) to investigate the possibility for removing engine oil (virgin and waste form) from synthetic wastewater by using Ricinus communis (RC) leaves natural and activated by KOH. The biosorption process was conducted by changing particle diameter in the range 150–300 and 300–600 µm, liquid flow rate in the range 2.5–4.5 L/min and gas flow rate in range of 0–1 L/min, while other parameters initial oil emulsion concentration, pH, adsorbent concentration, agitation speed and contact time were kept constant at 2000 mg/L, 2,
The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such
... Show MoreIn this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
Wireless control networks (WCNs), based on distributed control systems of wireless sensor and actuator networks, integrate four technologies: control, computer network and wireless communications. Electrostatic precipitator (ESP) in cement plants reduces the emissions from rotary kiln by 99.8% approximately. It is an important thing to change the existing systems (wireline) to wireless because of dusty and hazardous environments. In this paper, we designed a wireless control system for ESP using Truetime 2 beta 6 simulator, depending on the mathematical model that have been built using identification toolbox of Matlab v7.1.1. We also study the effect ofusing wireless network on performance and stability of the closed l
... Show MoreThis research aims at calculating the optimum cutting condition for various types of machining methods, assisted by computers, (the computer program in this research is designed to solve linear programs; the program is written in v. basic language). The program obtains the results automatically, this occur through entering the preliminary information about the work piece and the operating condition, the program makes the calculation actually by solving a group of experimental relations, depending on the type of machining method (turning, milling, drilling). The program was transferred to package and group of windows to facilitate the use; it will automatically print the initial input and optimal solution, and thus reduce the effort and t
... Show More