This study investigates the elimination of chemical oxygen demand (COD) from an Iraqi petroleum refinery effluent through a combined electro‐Fenton and adsorption process (EF+AC). Response surface methodology (RSM) with a Box–Behnken design (BBD) was employed to investigate the effects of FeSO 4 concentration, current density, and electrolysis time on the reduction of COD using the EF technique. According to the results of the analysis of variance (ANOVA) for the EF technique, FeSO 4 concentrations, with a contribution of 40.06%, and current density, with a contribution of 46.35%, exert a considerable influence. The optimum conditions for COD elimination rate (99.06%) and energy consumption (9.805 kWh/kg COD) were achieved using an electrolysis time of 85.12 min, a current density of 25 mA/cm 2 , and a concentration of 1.335 mM FeSO 4 . For the EF+AC process, a central composite design (CCD) was used to determine the influence of the packing level of activated carbon (AC) and the time on the reduction of COD at a constant current density of 5 mA/cm 2 and FeSO 4 concentration of 0.2 mM. The packing level of AC significantly influenced the elimination of COD, with time being the subsequent factor. The results showed that the optimal conditions led to a 98.77% removal of COD, requiring 0.91 kWh/kg COD. This efficiency and energy consumption were attained by using 92% packed AC and allowing the process to run for 85 min. EF+AC was found to have lower energy consumption and a smaller quantity of ferrous sulfate compared to EF. Notably, the current system offers a promising vision by combining the benefits of adsorption and electro‐Fenton for wastewater remediation.
A general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number determines the persistence or extinction of the COVID-19. If , one infected cell will transmit the virus to less than one cell, as a result, the person carrying the Coronavirus will get rid of the disease .If the infected cell will be able to infect all cells that contain ACE receptors. The stochastic model proves that if are sufficiently large then maybe give us ultimate disease extinction although , and this facts also proved by computer simulation.
A linear and nonlinear theoretical and experimental aeroelastic investigation of a wing-flap-tab typical section model undergoing two-dimensional incompressible airflow is described. The linear flutter velocity (LFV) and frequency are predicted using linear analysis. Then a freeplay structural nonlinearity is considered in the tab. The structural equations of motion have been coupled with Theodorsen aerodynamic theory to produce the theoretical aeroelastic model which is analyzed by a state space method to predict the LFV and flutter frequency. Linear piecewise function has been used to introduce the tab spring stiffness in the freeplay state. The ground vibration test is used to measure the model structural dynamic characteristics. Then th
... Show MoreThe effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
Human beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different situations of life passed by him. His choices and actions are voluntary and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of
... Show More