The effect of high energy radiation on the energy gap of compound semiconductor Silicon Carbide (SiC) are viewed. Emphasis is placed on those effects which can be interpreted in terms of energy levels. The goal is to develop semiconductors operating at high temperature with low energy gaps by induced permanent damage in SiC irradiated by gamma source. TEACO2 laser used for producing SiC thin films. Spectrophotometer lambda - UV, Visible instrument is used to determine energy gap (Eg). Co-60, Cs-137, and Sr-90 are used to irradiate SiC samples for different time of irradiation. Possible interpretation of the changing in Eg values as the time of irradiation change is discussed
Thin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new m
... Show MoreThe effect of α-particle irradiation on the optical absorption in nuclear track detectors (LR115) has been studied. These detectors have been irradiated with different doses. The optical absorption has been measured using the ultraviolet-visible (UV-1100) spectroscopy, that irradiation results in shifting the peaks of the optical absorption. The values of Urbach energy have been calculated from the position of steady-state optical band gap energy, for a standard sample which was unirradiated with indirect influence, has been found 1.9 eV whereas its value after irradiation 1.98 eV. In case of the direct influence, it is found to be, respectively, before irradiation 1.98 eV and after irradiation 2.05 eV. From these results, we can
... Show MoreIn this study, doped thin cadmium peroxide films were prepared by pulsed laser deposition with different doping concentrations of aluminium of 0.0, 0.1, 0.3, and 0.5 wt.% for CdO2(1-X)Al(X) and thicknesses in the range of 200 nm. XRD patterns suggest the presence of cubic CdO2 and the texture factor confirms that the (111) plane was the preferential growth plane, where the texture factor and the grain size decreased from 2.02 to 9.75 nm, respectively, in the pure sample to 1.88 and 5.65 nm, respectively, at a concentration of 0.5 wt%. For the predominant growth plane, the deviation of the diffraction angle Δθ and interplanar distance Δd from the standard magnitudes was 2.774° and 0.318 Å, respectively, for the pure sample decreased to
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
The PbSe alloy was prepared in evacuated quarts tubs by the method of melt quenching from element, the PbSe thin films prepared by thermal evaporation method and deposited at different substrate temperature (Ts) =R.T ,373 and 473K . The thin films that deposited at room temperature (R.T=303)K was annealed at temperature, Ta= R.T, 373 and 473K . By depended on D.C conductivity measurements calculated the density of state (DOS), The density of extended state N(Eext) increases with increasing the Ts and Ta, while the density of localized state N(Eloc) is decreased . We investigated the absorption coefficient (?) that measurement from reflection and transmission spectrum result, and the effect of Ts and Ta on it , also we calculated the tai
... Show MoreSpin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two differen
... Show MoreIn this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
In this study ZnS thin film was prepared by using thermal evaporation vacuum technique under the pressure (10-6) Torr on glass substrate at room temperature and annealing at 523 K Samples were irradiated to CO2 laser of power (1 watt) and wave length (10.6) μm at distance 10 cm from the source during (5 sec). The absorbance spectra was recorded by using UV-visible spectrophotometer and used to calculated some of optical properties investigated including their transmittance, reflectance spectra, energy gap, and extinction coefficient. From the result of thin films samples at room temperature and at 523 K, we conclude that the irradiation by laser causes a decrease in the transmittance and increasing in reflection and extinction coeffic
... Show MoreFluorescent Carbon Quantum Dots (CQDS) are a new kind of carbon nanoparticles that have appeared recently and have collected much interest as potential competitors to conventional semiconductor quantum dots (QDs). In addition to their comparable fluorescent properties, CQDs have the desired specifications of environmental friendliness, low toxicity, simple synthetic routes, low cost and surface passivation The functionalization of CQDS allow the control of their physicochemical properties. The main aim of this kind of researches is to account the variables that cannot be measured directly from practical experiments. Therefore, the work here is focused on the account energy gap of bulk (Eg bulk) by theoretically method (simulation) after
... Show MoreBaTiO3 thin films have been deposited on Si (111) and glass substrates by using pulsed laser deposition technique. The films were characterized by using X-ray diffraction, atomic force microscope and optical transmission spectra. The films growth on Si after annealing at 873K showed a polycrystalline nature, and exhibited tetragonal structure, while on glass substrate no growth was noticed at that temperature. UV-VIS transmittance measurements showed that the films are highly transparent in the visible wavelength region and near-infrared region for sample annealing on glass substrate. The optical gap of the film were calculated from the curve of absorption coefficient (αhν) 2 vs. hν and was found tobe 3.6 eV at substrate temperature 5
... Show More