This research examines the impact of cornering on the aerodynamic forces and stability of a Nissan Versa (Almera) passenger sedan car by introducing novel modifications. These modifications included single inverted wings with end plates as a front spoiler, double‐element inverted wings with end plates as a rear spoiler, and incorporating the ground as a diffuser under the car trunk. The goal is to enhance the performance and stability of conventional passenger cars. To ensure the accuracy of the numerical data, the study utilized multiple methodologies to model the turbulence model, ultimately selecting the most suitable option. This involved comparing numerical data with wind tunnel experimental data using force balance and pressure distribution. Once validated, the computational fluid dynamics (CFD) was employed to analyze the vehicle's aerodynamic performance relative to the straight‐line condition under cornering conditions. The car simulation in a cornering condition was conducted at a representative Reynolds number based on the vehicle length of about 1.3 × 107. The study discovered that asymmetry was a recurring theme regarding surface pressure distribution, with greater prominence under cornering conditions. All modified models exhibited a more favorable lift‐to‐drag ratio than the baseline, indicating improved aerodynamic efficiency. The underbody double‐element diffuser proved most effective for enhancing fuel efficiency and stability. Mesh refinement with a polyhedral algorithm consisting of 11.27 million elements and a computational domain with a frontal area of 91.8 m2 and a curved length of 31 m (˜7 times car length) was crucial for achieving accurate and repeatable results. The study employed multiple turbulence models within the CFD framework. The realizable k‐ε model was chosen due to its balance between accuracy and computational cost for all Nissan Versa models. These findings are limited to the selected parameters and wind tunnel conditions, and further investigations might be needed for extreme driving scenarios.
Fire incidences are classed as catastrophic events, which mean that persons may experience mental distress and trauma. The development of a robotic vehicle specifically designed for fire extinguishing purposes has significant implications, as it not only addresses the issue of fire but also aims to safeguard human lives and minimize the extent of damage caused by indoor fire occurrences. The primary goal of the AFRC is to undergo a metamorphosis, allowing it to operate autonomously as a specialized support vehicle designed exclusively for the task of identifying and extinguishing fires. Researchers have undertaken the tasks of constructing an autonomous vehicle with robotic capabilities, devising a universal algorithm to be employed
... Show MoreForeign direct investment (FDI) is one of the most practical types of foreign investment. FDI contributes to job creation, foreign exchange earnings and national income escalation, improving semi-skill and skilled labor. Based on our knowledge, this paper is the first study attempting to investigate the effect of political stability on the FDI in Turkey using an econometric approach. Achieving this objective, a co-integration analysis was conducted between the FDI and its determinants in the short-run and long-run including “macroeconomic indicators” and “Political Stability (PS)” in Turkey. Using annual data from 1974 to 2017 via Auto-Regressive Distributed Lag (ARDL) model. The results confirm the positive correlation betwe
... Show MoreIn this paper, a simulation of the electrical performance for Pentacene-based top-contact bottom-gate (TCBG) Organic Field-Effect Transistors (OFET) model with Polymethyl methacrylate (PMMA) and silicon nitride (Si3N4) as gate dielectrics was studied. The effects of gate dielectrics thickness on the device performance were investigated. The thickness of the two gate dielectric materials was in the range of 100-200nm to maintain a large current density and stable performance. MATLAB simulation demonstrated for model simulation results in terms of output and transfer characteristics for drain current and the transconductance. The layer thickness of 200nm may result in gate leakage current points to the requirement of optimizing the t
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreThe current research aims to :
•know the level of the chaotic behavior of the sample as a whole .
•Know the differences with statistical significance in disorderly behavior between the
disadvantaged and non-disadvantaged peers .
To achieve these objectives, the selected sample of Talbhalmrahlh medium and specifically
students of the second grade average, were chosen randomly stratified's (360) students
included sex (male, female) and (deprived of the Father and the non-deprived) for the
academic year (2013-2014) to the province Baghdad on both sides (Rusafa-Karkh (
As applied to them measurements of disorderly behavior, which is prepared by the researcher,
having achieved _khasaúsma of psychometric (valid
Biaxial hollow slab is a reinforced concrete slab system with a grid of internal spherical voids included to reduce the self-weight. This paper presents an experimental study of behavior of one-way prestressed concrete bubbled slabs. Twelve full-scale one-way concrete slabs of (3000mm) length with rectangular cross-sectional area of (460mm) width and (150mm) depth. Different parameters like type of specimen (solid or bubbled slabs), type of reinforcement (normal or prestress), range of PPR and diameter of plastic spheres (100 or 120mm) are considered. Due to the using of prestressing force in bubbled slabs (with ratio of plastic sphere diameter D to slab thickness H, D/H=0.67), the specimens showed an increase in ultimat
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show More