Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
This paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreOscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
Linear Feedback Shift Register (LFSR) systems are used widely in stream cipher systems field. Any system of LFSR's which wauldn't be attacked must first construct the system of linear equations of the LFSR unit. In this paper methods are developed to construct a system of linear/nonlinear equations of key generator (a LFSR's system) where the effect of combining (Boolean) function of LFSR is obvious. Before solving the system of linear/nonlinear equations by using one of the known classical methods, we have to test the uniqueness of the solution. Finding the solution to these systems mean finding the initial values of the LFSR's of the generator. Two known generators are used to test and apply the ideas of the paper,
... Show MoreThe inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati
... Show MoreWe present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.