Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fiber becomes anomalous for wavelengths lower than the zero dispersion.
Pure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
Cadmium Oxide films have been prepared by vacuum evaporation technique on a glass substrate at room temperature. Structural and optical properties of the films are studied at different annealing temperatures (375 and 475) ËšC, for the thickness (450) nm at one hour. The crystal structure of the samples was studied by X- ray diffraction. The highest value of the absorbance is equal to (78%) in the wavelength (530) nm, at annealing temperature (375) ËšC. The value of at a rate of deposition is (10) nm/s. The value of optical energy gap found is equal to (2.22) eV.
Nonlinear diffraction patterns can be obtained by focusing a laser beam through a thin slice of the material. Here, we investigated experimentally the formation of the far field nonlinear diffraction patterns of cw laser beam at 532 nm passing through a quartz cuvette containing multi-wall carbon nanotubes (MWCNT's) suspended in acetone and in DI water at concentrations of 0.030.wt.%, 0.045 wt.%, 0.060 wt.%, and 0.075 wt.%. Our results show that increasing the concentration of both types of suspensions (MWCNTs in acetone and MWCNTs DI water) led to increase in the number of pattern rings which indicates an increase in their nonlinear refractive indices. Moreover, MWCNTs DI water suspension at a concentration of 0.075 wt. % was more effic
... Show MoreWe studied the changing of structural and optical properties of pure and Aluminum-doped ZnO thin films prepared by thermal evaporation technique on glass substrates at thickness (800±50)nm with changing of annealing temperatures ( 200,250,300 )℃ for one hour. The investigation of (XRD) indicates that the pure and doped ZnO thin films were polycrystalline of a hexagonal wurtzite structure with preferred orientation along (002) plane. The grain size was decreased with doping before annealing, but after annealing the grain size is increasing with the increase of annealing temperature for pure film whereas for the doped films with ratios 1 %, 2 % we found that the grain size is larger than that before annealing. The grain size
... Show MoreThe ZnTe alloy was prepared as deposited thin films on the glass substrates at a thickness of 400±20 nm using vacuum evaporation technique at pressure (1 × 10-5) mbar and room temperature. Then the thin films under vacuum (2 × 10-3 mbar) were annealing at (RT,100 and 300) °C for one hour. The structural properties were studied by using X-ray diffraction and AFM, the results show that the thin films had approached the single crystalline in the direction (111) as preferred orientation of the structure zinc-blende for cubic type, with small peaks of tellurium (Te) element for all prepared thin films. The calculated crystallite size (Cs) decreased with the increase in the anne
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with differe
... Show MoreCadmium oxide CdO thin films were prepared by successive ionic layer adsorption and reaction (SILAR) technique at varying number of dippings. The CdO thin films were prepared from a source material of Cadmium acetate and ammonium hydroxide solution deposited on glass substrate at 95℃. The prepared thin films were investigated by X-ray diffraction (XRD), Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and UV-Visible spectrometry. The XRD analysis reveals that the films were polycrystalline with cubic structure having preferential orientation along (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes. While the tests of the scanning electron microscopy and the atomic force mic
... Show MoreIn this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreThis research deals with the effect of gallium oxide and cerium oxide as dopants on the structural and optical characteristics of tin oxide. Gallium and cerium oxide doped tin oxide was prepared with different doping concentrations (0, 0.03, 0.05 and 0.07) wt. pure and doped tin oxide thin films were prepared by the pulsed laser deposition technique. X-ray diffraction and UV-Visible spectrophotometer were employed to investigate both oxides doping effects. Results showed that all prepared samples have poly-crystalline structure with a preferred plane of crystal growth along (110), where the crystal size grew from 40.3 nm to 64.5 nm and to 43.5 nm for Ga2O3 and CeO2 doped tin oxide thin films, res
... Show More