Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fiber becomes anomalous for wavelengths lower than the zero dispersion.
The change in the optical band gap and optical activation energy have been investigated for pure Poly (vinyl alcohol)and Poly (vinyl alcohol) doped with Aluminum sulphate to proper films from their optical absorption spectra. The absorption spectra were measured in the wave range from (200-700) nm at temperature range (25-140) 0C. The optical band gap (Eg) for allowed direct transition decrease with increase the concentration of Aluminum sulphate. The optical activation energy for allowed direct transition band gap was evaluated using Urbach- edges method. It was found that ?E increases with increasing the concentration of Al2 (SO4)3 and decreases when temperature increases.
The fabricated Photodetector n-CdO /-Si factory thin films Altboukaraharara spatial silicon multi- crystallization of the type (n-Type) the deposition of a thin film of cadmium and at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was antioxidant thin films cadmium (Cd) record temperature (673k) for one hour to the presence of air and calculated energy gap optical transitions electronic direct ( allowed ) a function of the absorption coefficient and permeability and reflectivity by recording the spectrum absorbance and permeability of the membrane record within the wavelengths (300 1100nm). was used several the bias ranged between 1-5 Volts. The results showed that this
... Show MoreThis study is dedicated to investigate the effects of initial laser intensity on the nonlinear optical properties of the laser dye DQOCI dissolved in methanol with a concentration of 10 -5 M and doped with PMMA film. The properties were studied by using open and closed aperture Z-scan technique, with different levels of initial intensity (I0), excited by continuous diode solid-state laser at a wavelength of 532 nm. Three lenses of different focal lengths were employed to change the radius of the Gaussian laser beam and then change the initial intensity. For I0= 6.83 and 27.304 kWatt/cm2, the Z-scan curves show a saturation of absorption (SA) known as the negative type of nonlinearity, in which
... Show MorePure cadmium oxide films (CdO) and doped with zinc were prepared at different atomic ratios using a pulsed laser deposition technique using an ND-YAG laser from the targets of the pressed powder capsules. X-ray diffraction measurements showed a cubic-shaped of CdO structure. Another phase appeared, especially in high percentages of zinc, corresponding to the hexagonal structure of zinc. The degree of crystallinity, as well as the crystal size, increased with the increase of the zinc ratio for the used targets. The atomic force microscopy measurements showed that increasing the dopant percentage leads to an increase in the size of the nanoparticles, the particle size distribution was irregular and wide, in addition, to increase the surfac
... Show MoreIn this Research, (In2O3: CdO) films were prepared using pulsed laser deposition (PLD) method on glass substrate at room temperature deposited at laser influence 500mJ/cm2with different shoots N= (200,300,400,500and600). the structural, and the optical properties and the films are studied with different annealing temperatures (523and 623) K. Optical measurements and the films were analyzed by UV-VIS absorption spectra. The structural properties of samples were investigated by x-ray diffraction patterns of the films and show that the films and polycrystalline Structure with all shoots. Transmittance spectrum found is equal to 93.17%, refractive index range is 1.635 and energy gap range is 2.75-3.15ev.
The existing investigation explains the consequence of irradiation of violet laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous violet laser (405 nm) with power (1W) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 min
We have studied the synthesis environment of ambient pressure silica aerogels influence on their resulting morphological and optical properties. Transparent nanoporous silica aerogel was synthesized at ambient pressure using tetraethylorthosilicate precursor via a sol-gel process. Effect of drying control chemical additives and catalyst on physical properties was investigated. Trimethylchlorolsilane was employed as a hydrophobic reagent in the surface modification process. All aerogel samples were prepared utilizing a subcritical procedure under reactant pH fixed at 8.3, using just ammonium hydroxide or together with ammonium fluoride as catalyst. The effects catalyst types as well as drying control chemical additives on the physical pro
... Show MoreZinc oxide (ZnO) transparent thin films with different oxygen flow rates (0.5, 1.0, and 1.5)Litter/min. were prepared by thermal evaporation technique on glass substrate at a temperature of 200℃ with rate (10±2)nm sec-1, The crystallinity and structure of these films were analyzed by X-ray diffraction (XRD). It exhibits a polycrystalline hexagonal wurtzite structure and the preferred orientation along (002) plane. The Optical properties of ZnO were determined through the optical transmission method using ulta violet–Visible spectrophotometer with in wave length (300-1100)nm. The optical transmittance of the ZnO films increases from 75% to 85% with increase flow rate of O2, and the optical band gap of ZnO
... Show More