Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreWith the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security. This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for
... Show More<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c
... Show MoreIn this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
Enhancing quality image fusion was proposed using new algorithms in auto-focus image fusion. The first algorithm is based on determining the standard deviation to combine two images. The second algorithm concentrates on the contrast at edge points and correlation method as the criteria parameter for the resulted image quality. This algorithm considers three blocks with different sizes at the homogenous region and moves it 10 pixels within the same homogenous region. These blocks examine the statistical properties of the block and decide automatically the next step. The resulted combined image is better in the contras
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
In this paper, a new hybrid algorithm for linear programming model based on Aggregate production planning problems is proposed. The new hybrid algorithm of a simulated annealing (SA) and particle swarm optimization (PSO) algorithms. PSO algorithm employed for a good balance between exploration and exploitation in SA in order to be effective and efficient (speed and quality) for solving linear programming model. Finding results show that the proposed approach is achieving within a reasonable computational time comparing with PSO and SA algorithms.
The aim of this study is to find a relationship between oxidative stress and adiponectin in Iraqi patients with acromegaly. The present study included 30 patients with acromegaly disease attending at Al-Yarmuk teaching hospital , and 30 healthy individuals as a control group.The two groups with ages ranging (30-55) years. The results revealed a highly significant elevation in all parameters (GH,IGF-1 , adiponectin , malondialdehyde , and peroxynitrite ) levels in sera of patients when compared with healthy control .It can be concluded that oxidative stress (malondialdehyde and peroxynitrite ) may be valuable in detecting of endocrine diseases like acromegaly .
This research aims to test the relationship between "relational leadership as an independent variable and organizational energy as a dependent variable. The current research variables are among the recent and important variables for the development of organizations, and for the purpose of explaining the relationship and influence between the variables, a set of goals has been formulated, including providing the interested and scientific and theoretical information explaining the nature of the variables The research, and the extent to which its causes are reflected in the research sample to increase the interest of the research organization’s organization and make it more appropriate to the required performance in light of a cha
... Show MoreThe aim of this study is to find a relationship between oxidative stress and adiponectin in Iraqi patients with acromegaly. The present study included 30 patients with acromegaly disease attending at Al-Yarmuk teaching hospital , and 30 healthy individuals as a control group.The two groups with ages ranging (30-55) years. The results revealed a highly significant elevation in all parameters (GH,IGF-1 , adiponectin , malondialdehyde , and peroxynitrite ) levels in sera of patients when compared with healthy control .It can be concluded that oxidative stress (malondialdehyde and peroxynitrite ) may be valuable in detecting of endocrine diseases like acromegaly .