In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative characterization of surface structure and morphology of the accumulated oxides. The energy dispersive X-ray (EDX) provided a semi-quantitative analysis of deposit composition. The atomic force microscopy (AFM) apparatus quantified the roughness. We examined the efficiency of composite electrodes in coinciding with the removal of Chemical Oxygen Demand (COD) under current densities of 40, 60, and 80 mA/cm2, pH values of 3, 4, and 5, and NaCl concentrations of 1, 1.5, 2 g/l. RSM covered the optimization of process parameters in conjunction with Central Composite Design (CCD). The COD represented the response function in the optimization procedure. The optimal current density, NaCl concentration, and pH magnitude were 80 mA/cm2, 1.717 g/l, and 3, respectively. The efficiency of COD elimination of 99.925% attained after 1 hour of indirect electrochemical oxidation with an energy consumption of 152.380 kWh per kilogram of COD. The COD elimination model is significant based on the correlation coefficient (R2) and F-values, and the experimental data fitted well to a second-order polynomial model with R2 of 98.93%.
Coupling reaction of 2-amino benzoic acid with the 8-hydroxy quinoline gave the azo ligand (H2L): 5-(2-benzoic acid azo )-8-hydroxy quinoline.Treatment of this ligand with some metal ions (CoII, NiII and CuII ) in ethanolic medium with a (1:2) (M:L) ratio yielded a series of neutral complexes with general Formula[M(HL)2],where: M=Co(II), Ni(II) and Cu(II), HL=anion azo ligand (-1).The prepared complexes were characterized using flame atomic absorption,FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements.
The formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione
... Show MoreRemoval of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
Cadmium element is one of the group IIB and classified as heavy metal and effects on human health and environment. The present work concerns with the biosorption of Cd(II) ions from aqueous solution using the outer layer of onions. Adsorption of the used ions was found to be pH dependent and maximum removal of the ions by outer layer of onions and was found to be 99.7%.
Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG). The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonw
... Show MoreThis study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test.Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient pr
... Show MoreThis study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test. Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of met
... Show More