Carbonized nonwoven nanofibers composite were fabricated using the electrospinning method of a polymeric solution composite followed by heat treatment including stabilization and calcination steps. The spun polymeric solution was a binary polymer mixture/organic solvent. In this study, two types of polymers (Polymethylmethacrylate (PMMA) and Polyethylene glycol (PEG)) were used separately as a copolymer with the base polymer (Polyacrylonitrile (PAN)) to prepare a binary polymer mixture in a mixing ratio of 50:50. The prepared precursor solutions were used to prepare the precursor nanofibers composite (PAN: PMMA) and (PAN: PEG). The fabricated precursors nonwoven fibers composite were stabilized and carbonized to produce carbon nonwoven nanofibers composite. The effect of the combined polymer type on the fiber size, fiber size distribution, and surface morphology of the prepared nonwoven nanofibers was studied. The nonwoven fibers orientation and surface morphology were characterized using field emission scanning electron microscope (FESEM). In addition, ImageJ software has been used to calculate the fiber size and fiber size distribution. Here, the obvious effect of the copolymer type on the surface morphology, fiber size, and fiber orientation has been demonstrated. Using a copolymer with PAN polymer led to increasing the fiber size. The carbonized nanofibers composite prepared using PEG polymer as a copolymer was more ordered fibers in comparison with the fiber orientation of carbon nanofibers based on pure PAN. In contrast of that, using PMMA as a copolymer resulted curly carbonized nonwoven nanofiber composite.
Electrospun nanofiber membranes are employed in a variety of applications due to its unique features. the nanofibers' characterizations are effected by the polymer solution. The used solvent for dissolving the polymer powder is critical in preparing the precursor solution. In this paper, the Polyacrylonitrile (PAN)-based nanofibers were prepared in a concentration of 10 wt.% using various solvents (NMP, DMF, and DMSO). The surface morphology, porosity, and the mechanical strength of the three prepared 10 wt.% PAN-based nanofibers membranes (PAN/NMP, PAN/DMF, and PAN/DMSO) were characterized using the Scanning Electron Microscopy (SEM), Dry-wet Weights method, and Dynamic Mechanical Analyzer (DMA). Using DMF as a solvent resulted in a lon
... Show MoreIn this study, two active galaxies (NGC4725, NGC4639) have been chosen to study their morphological and photometric properties, by using the IRAF ISOPHOTE ELLIPS task with griz-filters. Observations are obtained from the Sloan Digital Sky Survey (SDSS) which reaches now to the DATA Release (DR14). The data reduction of all images (bias and flat field) has been done by SDSS Pipeline. The surface photometric investigation was performed like the magnitude. Together with isophotal contour maps, surface brightness profiles and a bulge/disk decomposition of the images of the galaxies, although the disk position angle, ellipticity, and inclination of the galaxies have been done. Also, the color of galaxies was studied, where chromatic distribution
... Show MoreAbstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreIn this work, nanostructure porous silicon surface was prepared using electrochemical etching method under different current densities. I have studied the surface morphology and photoluminescence (PL) of three samples prepared at current densities 20, 30 and 40 mA/cm2 at fixed etching time 10 min. The atomic force microscopy (AFM) images of porous silicon showed that the nanocrystalline silicon pillars and voids over the entire surface has irregular and randomly distributed. Photoluminescence study showed that the emission peaks centered at approximately (600 – 612nm) corresponding energies (2.06 – 2.02eV).
While current-voltage characteristics shows, as the current density increase the current flow in the forward bias is decreasi
The study was reflection of the impact of the widespread use of polymer Novolak composite reinforced Glass fiber and Asbestos fiber once again with weight fraction 60% on the physical properties, which included (Hardness, Compressive deformation, compressive modulus of elasticity, Flexural modulus of elasticity, Resilience modulus, the maximum of Flexural strength, Flexural strain energy and Shear strength inner layers); it is known how much important the media as a source of bacterial contamination, which contributes directly or indirectly in the process of aging of these materials. These Novolak composite reinforced, prepared by weight fraction of (10%) and (14%) of the Hexamethylene-tetraamine (HMTA) hardener material. It
... Show MoreIn this research a study of the effect of quality, sequential and directional layers for three types of fibers are:(Kevlar fibers-49 woven roving and E- glass fiber woven roving and random) on the fatigue property using epoxy as matrix. The test specimens were prepared by hand lay-up method the epoxy resin used as a matrix type (Quick mast 105) in prepared material composit . Sinusoidal wave which is formed of variable stress amplitudes at 15 Hz cycles was employed in the fatigue test ( 10 mm )and (15mm) value 0f deflection arrival to numbers of cycle failure limit, by rotary bending method by ( S-N) curves this curves has been determined ( life , limit and fa
... Show MoreAbstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
Optical properties and surface morphology of pure and doped Polystyrene films with different divalent metals of Zn, Cu and Sn and one concentration percentage have been studied. Measurements of UV-Vis spectrophotometer and AFM spectroscopy were determined. The absorbance, transmittance and reflectance spectrums were used to study different optical parameters such as absorption coefficient, refractive index, extinction coefficient and energy gap in the wavelengths rang 200-800nm. These parameters have increased in the presence of the metals. The change in the calculated values of energy gaps with doping metals content has been investigated in terms of PS matrix structural modification. The value of opt
... Show MoreIn the present work, the focusing was on the study of the x-ray diffraction, dielectric constant, loses dielectric coefficient, tangent angle, alter- natively conductivity and morphology of PET/BaTio3. The PET/BaTio3 composite was prepared for polyethylene terephthalate PET polymer composite containing 0, 10, 20, 30, 40, 50, and 60 wt. % from Barium titanate BaTi03 powder. The composite of two materials leads to form mixing solution and hot-pressing method. The effect of BaTio3 on the structure and dielectric properties with morphology was studied on PET matrix polymer using XRD, LCR meter and SEM.