In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
Abstract
The study aims to identify the extent to which the applied colleges at the University of Technology and Applied Sciences meet the comprehensive quality standards in light of the national education strategy for the 2040 Vision in the Sultanate of Oman. To do this, the researchers used the descriptive approach. They used a questionnaire as a tool for data collection that was applied to (237) administrators, academics, and support functions. The study found that the extent to which the applied colleges at the University of Technology and Applied Sciences meet the comprehensive quality standards in the light of the National Education Strategy 2040 in the Sultanate of Oman recorded a high range. The study als
... Show MoreThe current study is the identification and isolation dermatophyte species in clinical isolates by both Sabouraud’s Dextrose Agar (SDA) and on Dermatophyte Test Medium (DTM). Clinical specimens of hair, nails and skin scales were collected from patients with dermatophytosis and submitted to direct microscopic examination after immersion in 20% of potassium hydroxide solution. The clinical specimens were cultured on SDA containing chloramphenicol and cycloheximide, and on DTM. Tinea corporis showed the highest prevalent dermatophyte infection among patients (26.7%), followed by Tinea pedis (23.3%), whereas Tinea manuum exhibited the lowest fungal infection (6.7 %). Rural areas revealed the highest prevalence of dermatophyte in
... Show MoreThis paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.
In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati
... Show MoreIn our article, three iterative methods are performed to solve the nonlinear differential equations that represent the straight and radial fins affected by thermal conductivity. The iterative methods are the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM) to get the approximate solutions. For comparison purposes, the numerical solutions were further achieved by using the fourth Runge-Kutta (RK4) method, Euler method and previous analytical methods that available in the literature. Moreover, the convergence of the proposed methods was discussed and proved. In addition, the maximum error remainder values are also evaluated which indicates that the propo
... Show MoreWe present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.