Preferred Language
Articles
/
rYaZgoYBIXToZYALTYw4
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To illustrate the accuracy and efficiency of the proposed methods, the maximum error remainder is calculated. The results shown that the proposed methods are accurate, reliable, time saving and effective. In addition, the approximate solutions are compared with the fourth order Runge-Kutta method (RK4) achieving good agreements.</p>
Scopus Clarivate Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method
...Show More Authors

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Fractional Brownian motion inference of multivariate stochastic differential equations
...Show More Authors

Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc

... Show More
Scopus (4)
Scopus
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Existence and Uniqueness of The Solution of Nonlinear Volterra Fuzzy Integral Equations
...Show More Authors

 In this paper, we proved the existence and uniqueness of the solution of nonlinear Volterra fuzzy integral equations of the second kind.
 

View Publication Preview PDF
Publication Date
Wed Aug 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing and Solving the System of Linear Equations Produced From LFSR Generators
...Show More Authors

 

Linear Feedback Shift Register (LFSR) systems are used  widely in stream cipher systems field. Any system of LFSR's which wauldn't be attacked must first construct the system of linear equations of the LFSR unit. In this paper methods are developed to construct a system of linear/nonlinear equations of key generator (a LFSR's system) where the effect of combining (Boolean) function of LFSR is obvious. Before solving the system of linear/nonlinear equations by using one of the known classical methods, we have to test the uniqueness of the solution. Finding the solution to these systems mean finding the initial values of the LFSR's of the generator. Two known generators are used to test and apply the ideas of the paper,

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Derivation of Embedded Diagonally Implicit Methods for Directly Solving Fourth-order ODEs
...Show More Authors

EDIRKTO, an Implicit Type Runge-Kutta  Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients
...Show More Authors

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
Proving The Existence and the Uniqueness Solutions of fractional Integro- Differential Equations
...Show More Authors

In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.

View Publication Preview PDF