In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
The researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreThe researchers have tried to focus on how to determine the number of pipes that are present in one obtained hyperbola in radargram profile. Ground Penetration Radar (GPR) survey was performed to distinguish between two zero-spaced iron pipes in radargram. The field work was carried out by constructing artificial rectangular models with dimensions of length, width, and depth equal to 10.0, 1.0, 0.65 meter respectively that filled with dry clastic mixture deposit, three twin sets of air filled iron pipes of 15.24 cm (6 inch) diameter were buried horizontally and vertically inside the mixture at different distances together. Visual and Numerical interpretation were chosen to get the best results. In the visual interpretation, the amplitude
... Show MoreIn this article, the nonlinear problem of Jeffery-Hamel flow has been solved analytically and numerically by using reliable iterative and numerical methods. The approximate solutions obtained by using the Daftardar-Jafari method namely (DJM), Temimi-Ansari method namely (TAM) and Banach contraction method namely (BCM). The obtained solutions are discussed numerically, in comparison with other numerical solutions obtained from the fourth order Runge-Kutta (RK4), Euler and previous analytic methods available in literature. In addition, the convergence of the proposed methods is given based on the Banach fixed point theorem. The results reveal that the presented methods are reliable, effective and applicable to solve other nonlinear problems.
... Show MoreIn this article, the numerical and approximate solutions for the nonlinear differential equation systems, represented by the epidemic SIR model, are determined. The effective iterative methods, namely the Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM), and the Banach contraction method (BCM), are used to obtain the approximate solutions. The results showed many advantages over other iterative methods, such as Adomian decomposition method (ADM) and the variation iteration method (VIM) which were applied to the non-linear terms of the Adomian polynomial and the Lagrange multiplier, respectively. Furthermore, numerical solutions were obtained by using the fourth-orde Runge-Kutta (RK4), where the maximum remaining errors showed th
... Show MoreThe presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
The debate on the methodology of media and communication research is no longer subject to the logic of the contradiction between the quantitative and the qualitative approach, nor the logic of the comparison between them. The nature of the topics presented for research, the problems they raise, the goals to be achieved from the research, and the epistemological positioning of researchers are among the critical factors that dictate the appropriate approach or methodological approaches to conduct their research. This positioning means the implicit philosophical principles upon which any researcher relies and which determine the path he/ she takes to produce scientifically approved knowledge. The method of the researcher's access to the phe
... Show More