The Taylor series is defined by the f and g series. The solution to the satellite's equation of motion is expanding to generate Taylor series through the coefficients f and g. In this study, the orbit equation in a perifocal system is solved using the Taylor series, which is based on time changing. A program in matlab is designed to apply the results for a geocentric satellite in low orbit (height from perigee, hp= 622 km). The input parameters were the initial distance from perigee, the initial time, eccentricity, true anomaly, position, and finally the velocity. The output parameters were the final distance from perigee and the final time values. The results of radial distance as opposed to time were plotted for dissimilar times in seconds and their comparison with the exact solution, with the aim of selecting an optimized reference orbit at a height of 622 km. The results indicated that the two series diverged excessively as the time increased from the exact solution, excluding the time of 850 sec. The f and g series had a little shift. Besides, the root mean square error (rmse) is computed for 750 sec. It was about 5 for the two series before diverging at about 180 sec and rapidly growing with time. For 850 sec, the (rmse) is approaching 10 for the two series and increasing quickly over time. So, the (rmse) is directly proportional to time, which means that as time increases, the diverging behavior and the value of the (rmse) will also increase. If more terms (Δt) are used for the two series and more time is included, the two series will deviate from the exact solution. The program's results are compared to other published studies in this field; they demonstrated high convergence.
The work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show More