The Taylor series is defined by the f and g series. The solution to the satellite's equation of motion is expanding to generate Taylor series through the coefficients f and g. In this study, the orbit equation in a perifocal system is solved using the Taylor series, which is based on time changing. A program in matlab is designed to apply the results for a geocentric satellite in low orbit (height from perigee, hp= 622 km). The input parameters were the initial distance from perigee, the initial time, eccentricity, true anomaly, position, and finally the velocity. The output parameters were the final distance from perigee and the final time values. The results of radial distance as opposed to time were plotted for dissimilar times in seconds and their comparison with the exact solution, with the aim of selecting an optimized reference orbit at a height of 622 km. The results indicated that the two series diverged excessively as the time increased from the exact solution, excluding the time of 850 sec. The f and g series had a little shift. Besides, the root mean square error (rmse) is computed for 750 sec. It was about 5 for the two series before diverging at about 180 sec and rapidly growing with time. For 850 sec, the (rmse) is approaching 10 for the two series and increasing quickly over time. So, the (rmse) is directly proportional to time, which means that as time increases, the diverging behavior and the value of the (rmse) will also increase. If more terms (Δt) are used for the two series and more time is included, the two series will deviate from the exact solution. The program's results are compared to other published studies in this field; they demonstrated high convergence.
In this study the role of remote sensing and geographic information systems in the planning of some Iraqi cities, including the city of Aziziyah in Kut / Wasit Governorate, was considered. Certain appropriate models (sprawling growth patterns) have been adopted to plan this city, and tables and a future map have been prepared to arrange this city. Land uses for public services will be proposed for adopted case(Aziziyah in Kut / Wasit Governorate). This paper describes a specific application of GIS functionalities for spatial planning analysis, examines the breadth of GIS and attempts to address the analytical part’s limitations in planning studies. The study concluded, through high-resolution visuals, to the possibility of determining th
... Show MoreThe problem of rapid population growth is one of the main problems effecting countries of the world the reason for this the growth in different environment areas of life commercial, industrial, social, food and educational. Therefore, this study was conducted on the amount of potable water consumed using two models of the two satellite and aerial images of the Kadhimiya District-block 427 and Al-Shu,laa district-block 450 in Baghdad city for available years in the Secretariat of Baghdad (2005, 2011,2013,2015). Through the characteristics of geographic information systems, which revealed the spatial patterns of urban creep by determining the role and buildings to be created, which appear in the picture for the
... Show MoreThe study aimed to determine of some Optimum conditions for bioremediation and removing of seven mineral elements included hexavalent chromium, nickel, cobalt, cadmium, lead, iron and copper as either alone or in group by living and heat treated cells of baker’s yeast Saccharomyces cerevisiae. The dried baker's yeast from Aldnaamaya China Company was used in this study. Biochemical tests was used to ensure yeast belonging to S. cerevisiae and then used to remove the mentioned mineral elementes under different conditions which included incubation period, pH, and temperature. It was found that the best of these conditions was 60 minutes for duration of incubation, 6 for pH, 25 ᵒC for temperature. During the study the behavior of living
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MoreThe aim of this study is to investigate the sedimentation environments and diagenetic processes of the Ibrahim Formation (Oligocene-early Miocene) in Zurbatiya, eastern Iraq. The Ibrahim Formation is comprised mostly of clayey micrite and skeletal grains composed of planktonic foraminifera, calcispheres, radiolaria, and benthic foraminifera. Glauconite and pyrite were documented in some restricted zones of this formation; they reflect quiet and reducing conditions. Radiolaria were identified in Late-Oligocene which was not known previously at this age regionally in carbonate formations of the Arabian Plate (AP). Mudstone, wackestone, and planktonic foraminiferal wackepackstone are the main microfacies that are affected by dissolutio
... Show MoreThe general assumption of linear variation of earth pressures with depth on retaining structures is still controversial; investigations are yet required to determine those distributions of the passive earth pressure (PEP) accurately and deduce the corresponding centroid location. In particular, for rigid retaining walls, the calculation of PEP is strongly dependent on the type of wall movement. This paper presents a numerical analysis for studying the influence of wall movement on the PEP distribution on a rigid retaining wall and the passive earth thrust location. The numerical predictions are remarkably similar to existing experimental works as recorded on scaled test models and ful
The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such
... Show More