Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the efficiency of our algorithm, several machine learning algorithms have been applied on combined dataset with and without using BMCD algorithm. The experimental results have concluded that BMCD provides an effective solution to imbalanced intrusion detection and outperforms the state-of-the-art intrusion detection methods.
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreAbstract
This study identified the developing of a range of students' geography learning skills and the change in their attitudes toward fieldwork as a consequence of leaning experiences that occurred within a field trip. The sample of the study consisted of (27) students within a special topic course enrolled in Geography Department at Umm Al-Qura University in Saudi Arabia in semester 2, 2018. A range of students' geography learning skills were measured by the skills questionnaire that consisted of 12 geography skills after completing field work. Changes in students' at
... Show MoreOn Saturday, May 13, 2023, a glorious day was engraved in the history of Al-Kindy College Medical Journal as it is the day of indexing the journal in the Scopus Database Journals. The journal has paced a strenuous journey to make that achievement.
Objective(s): The study aimed to assess the level of nursing performance and practices in terms of approaching or
distancing itself from the optimal performance criteria universally adopted within the variable dressing surgical
wounds of patients admitted to the surgical wards, and determine the relationship between the level of nurse's
performance and socio-demographic characteristics of them in those wards.
Methodology: A descriptive assessing design was adopted from November the 10th, 2010 until June the 1st, 2011 to
assess the nursing care provided practices for the postoperative period within the variable dressing surgical wounds in
the complex of Medical City. Whereas the study was conducted in three hospitals; Ba
Background: Primary Health care (PHC) is unanimous to be the cornerstone of a person-centered health system. While the adoption of a well-function, two-way, and organized referral system is the mainstay in the development of an efficient healthcare delivery system.
Objective: To Assess the practice & opinion of doctors in the hospitals toward the referral system. to determine the doctors in the hospital's commitment to referral system instructions and guidelines.
Subjects and Methods: A cross-sectional study with analytic elements was conducted in nine Iraqi governorates. Eight doctors from each health directorate, resulting in a tot
... Show MoreAbstract:
Objective: The study was done to evaluate nurses’ knowledge and practices toward physical restraint at critical care unit
Methodology: Fifty nurses, who were selected by a non-probability (convenient) sampling method, participated in this descriptive study. The instrument of the study was knowledge parts of the questionnaire were initially developed in the U.S.A for nursing homes; in 2006 they were adopted for all hospital units by the original developers. The knowledge section of the questionnaire consisted of 20 items, which were used to measure knowledge of nurses towards the definition, indications and contra
... Show More